

Neff Vis d'entraînement

Si on veut sortir des sentiers battus pour proposer aux clients de la construction mécanique, de la technique de manutention et d'automatisation des nouvelles solutions, il faut connaître ces sentiers aussi bien que Karl Neff. Depuis plus de100 ans, l'entreprise familiale NEFF fabrique et commercialise des entraînements à vis et linéaires de plus haute précision dans des qualités roulées et meulées. Nos produits sont une combinaison d'une orientation conséquente vers l'utilisateur, de l'ingéniosité souabe et d'une qualité sans compromis.

Grâce au principe de construction modulaire, NEFF fabrique exactement l'entraînement dont l'application du client a besoin: Des vis-mères avec différentes vis trapézoïdales et écrous, des vis à billes roulées ou meulées et des vérins à vis. Nous fabriquons aussi volontiers des solutions spéciales, de la pièce unique jusqu'à la grande série. Ainsi, nos clients font des économies : avec de brefs délais de livraison, des prix compétitifs et un service de conseil complet, nous sommes un partenaire fiable pour les constructeurs d'installation, de machines et d'appareils.

Sommaire

Vue d'ensemble	∠
Vis trapézoïdale	
Information technique	6
Caractéristiques techniques	7
Vis à billes	
Caractéristiques techniques générales	8
Caractéristiques techniques	9
Usinages d'extrémités	
Palier fixe/palier libre	10
FK, FF, BK, BF	13
Paliers à roulement	
BK, BF, FK, FF, ZKLR	14
Ecrous	
Ecrous à gorges	17
Ecrous pour vis trapézoïdale	18
Ecrous à flasque pour vis à billes	
Ecrous cylindriques pour vis à billes	24
Vérins à vis	
Caractéristiques techniques générales	
Dimension, modèles	
Fixations	
Paliers à cardan	33
Accessoires	
Protecteur à ressort	36
Moteurs triphasés	
Brides moteur	40
Accouplements	
Arbres à cardan	42
Palier à semelle	47
Exemples pour dispositions et sens de rotation	48
Sélection	50
Calcul	51
Dimensionnement de l'entraînement	60
Montage et entretien	65

Vue d'ensemble Entraînements à vis Neff

Entrainement par vis trapézoïdale

Les vis trapézoïdales Neff sont réalisées à partir d'un acier spécifique permettant d'atteindre un niveau de rectitude élevé. La série est réalisée selon la norme DIN 103 Le jeu réduit de l'écrou autorise une charge radiale.

Vis trapézoïdales

- Vis trapézoïdales roulées de précision RPTS. Ø 10-80mm en 1 filet ou à filets multiples
- Vis trapézoïdales usinées WPTS. Ø 16-120 mm (Les vis trapézoïdales sont également livrables en version protégées ou lnox.

Ecrous trapézoïdales

- KSM, écrou cylindrique en acier Ø 10-80 mm
- SKM, écrou six pans en acier. Ø 10-80 mm
- LRM, écrou cylindrique en bronze à canon, Ø 10 80 mm
- EFM, écrou en bronze à canon cylindrique Ø 10-80 mm
- Ecrou à flasque en bronze GBZ 12
- Ecrou à flasque en plastique, alliage PTFE
- Ecrou à cardan en bronze GBZ 12
- Ecrou à cardan en plastique, alliage PTFE
- Ecrou à console en bronze GBZ 12
- Ecrou à console en plastique GBZ 12

Entrainement par vis à billes

La gamme est selon la norme DIN69051 et la norme Neff. Tous les écrous (flasque ou cylindrique) sont livrables selon la norme de fixation DIN. Les versions préchargées à 2 écrous permettent d'atteindre un positionnement précis avec une très bonne répétabilité. Ecrous spéciaux sur demande. Toutes les vis peuvent être proposées avec des usinages d'extrémités selon plan client. Sur demande nous pouvons uniquement proposer le recuit l'usinage étant effectué par vos soins

Vis à billes

- Vis roulées de précision Ø12-63mm
- Pas de 5-50 mm avec une précision du pas de 23µm 50 µm et 200 µm/ 30 mm

Ecrou de vis à billes

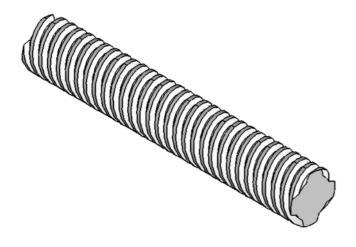
- KGF-N NEFF Écrou simple à flasque
- KGF-D DIN Écrou simple à flasque
- KGM-N NEFF Écrou simple cylindrique
- KGM-N DIN Écrou simple cylindrique
- KGM-E Ecrou simple à visser
- Vis à billes rectifiées Ø 6-120mm (Écrou apparié à la vis, possibilité de livrer en version sans jeu ou préchargée)

Vue d'ensemble NEFF Vérin à vis

Vérins à vis

Le programme comprend 11 tailles avec des poussées entre 2,5 et 500 kN avec des vis en rotation ou fixes.

- Certaines tailles avec un graissage à vie de série
- Efficacité amélioré par une optimisation des tolérances et le traitement de surface
- Forces latérales réduites grâce à l'utilisation de vis-mères NEFF
- Egalement disponible en option avec des entraînements par vis à billes pour les mêmes dimensions

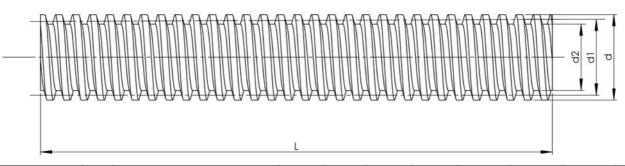

Accessoires NEFF

- Palier fixes
- Multiples accessoires comme des systèmes de couvercles, accouplements, volants, moteurs d'entraînement, etc.

Caractéristiques techniques générales Vis trapézoïdale

Les vis trapézoïdales de Neff Gewindetriebe sont obtenues par roulage.

Vis trapézoïdale de précision Données Techniques


Filetage:	Filetage métrique selon DIN
	103
Diamètre:	10 – 80 mm
■ Pas:	2 – 24 mm
Nombre de filets:	
Sens de pas:	droite, avec 1 filet aussi à
	gauche,
Longueur:	jusqu'à 3000 mm jusqu'à
	Tr 18 x 4
	jusqu'à 6000 mm à partir
	Tr 20 x 4
Matière:	1.0401 (acier C15) recuit de
	détente, soudable
Précision:	50 – 300 μm/300 mm
Rectitude:	0,1 – 0,5 mm/300 mm
■ Droite/gauche :	pour des pas de 2 – 10 mm
Usinage des bouts de vis :	Selon plan client

Vis trapézoïdales

Vis trapézoïdales roulées de précision RPTS

Longueur de fabrication : 3000 mm à partir du Ø 20 mm jusqu'à 6000 mm. Cote L selon souhait du client

Type Diamètre extérieur [mm] Pas [mm]			Dimens [mm			Précision [µm/ 300 mm]	Recti- tude [mm/ 300 mm]	Angle*		Charge	Moment quadra- tique	Moment statique	Moment d'inertie de la masse
droite/gauche	d	d _{1 min}	d _{1 max}	d ₂	H ₁		300 111111	α	η	[kg/m]	[cm ⁴]	[cm ³]	[kg m ² /m]
RPTS Tr 10x2	10	8,739	8,929	6,89	1	300	0,5	4° 2′	0,40	0,500	0,011	0,032	0,51 · 10 ⁻⁵
RPTS Tr 10x3		8,191	8,415	5,84	1,5	300	0,5	6° 24′	0,51	0,446	0,0057	0,020	0,40 · 10 ⁻⁵
RPTS Tr 12x3	12	10,191	10,415	7,84	1,5	300	0,5	5° 11′	0,46	0,68	0,019	0,047	0,94 · 10 ⁻⁵
RPTS Tr 12x6 P3	12	10,165	10,415	7,84	1,5	300	0,5	10° 18′	0,62	0,68	0,019	0,047	0,94 · 10 ⁻⁵
RPTS Tr 14x3	14	12,191	12,415	9,84	1,5	300	0,5	4° 22′	0,42	0,96	0,046	0,094	1,88 · 15 ⁻⁵
RPTS Tr 14x4		11,640	11,905	8,80	2	300	0,5	6° 3′	0,50	0,888	0,029	0,067	1,60 · 10 ⁻⁵
RPTS Tr 16x2	16	14,729	14,929	12,89	1	50	0,1	2° 36′	0,28	1,39	1,36	0,21	3,9 · 10 ⁻⁵
RPTS Tr 16x4	16	13,640	13,905	10,80	2	50	0,1	5° 11′	0,46	1,21	0,067	0,124	2,96 · 10 ⁻⁵
RPTS Tr 16x8 P4	16	13,608	13,905	10,80	2	300	0,3	10° 18′	0,62	1,21	0,067	0,124	2,96 · 10 ⁻⁵
RPTS Tr 18x4	18	15,640	15,905	12,80	2	50	0,1	4° 32′	0,43	1,58	0,132	0,206	5,05 · 10 ⁻⁵
RPTS Tr 20x4	20	17,640	17,905	14,80	2	50	0,1	4° 2′	0,40	2,00	0,236	0,318	8,10 · 10 ⁻⁵
RPTS Tr 20x8 P4		17,608	17,905	14,80	2	200	0,2	8° 3′	0,57	2,00	0,236	0,318	8,10 · 10 ⁻⁵
RPTS Tr 20x16 P4		17,608	17,905	14,80	2	200	0,2	15° 47′	0,71	2,00	0,236	0,318	8,10 · 10 ⁻⁵
RPTS Tr 22x5	22	19,114	19,394	15,50	2,5	50	0,1	4° 39′	0,43	2,34	0,283	0,366	1,11 · 10 ⁻⁴
RPTS Tr 22x24 P4 S		19,140	19,505	16,50	2,5	200	0,2	21° 34′	0,75	2,34	0,364	0,441	1,11 · 10 ⁻⁴
RPTS Tr 24x5	24	21,094	21,394	17,50	2,5	50	0,1	4° 14′	0,41	2,85	0,460	0,526	1,65 · 10 ⁻⁴
RPTS Tr 24x10 P5		21,058	21,394	17,50	2,5	200	0,2	8° 25′	0,58	2,85	0,460	0,526	1,65 · 10 ⁻⁴
RPTS Tr 26x5	26	23,094	23,394	19,50	2,5	50	0,1	3° 52′	0,39	3,40	0,710	0,728	2,35 · 10 ⁻⁴
RPTS Tr 28x5	28	25,094	25,394	21,50	2,5	50	0,1	3° 34′	0,37	4,01	1,050	0,976	3,26 · 10 ⁻⁴
RPTS Tr 30x6	30	26,547	26,882	21,90	3	50	0,1	4° 2′	0,40	4,50	1,130	1,030	4,10 · 10 ⁻⁴
RPTS Tr 30x12 P6		26,507	26,882	21,90	3	200	0,2	8° 3′	0,57	4,50	1,130	1,030	4,10 · 10 ⁻⁴
RPTS Tr 32x6	32	28,547	28,882	23,90	3	50	0,1	3° 46′	0,38	5,19	1,600	1,340	5,45 · 10 ⁻⁴
RPTS Tr 36x6	36	32,547	32,882	27,90	3	50	0,1	3° 18′	0,35	6,71	2,970	2,130	9,10 · 10 ⁻⁴
RPTS Tr 40x7	40	36,020	36,375	30,50	3,5	50	0,1	3° 29′	0,37	8,21	4,250	2,790	1,37 · 10 ⁻³
RPTS Tr 40x14 P7		35,978	36,375	30,50	3,5	200	0,2	6° 57′	0,53	8,21	4,250	2,790	1,37 · 10 ⁻³
RPTS Tr 44x7	44	40,020	40,275	34,50	3,5	50	0,1	3° 8′	0,34	10,10	6,950	4,030	2,10 · 10 ⁻³
RPTS Tr 48x8	48	43,468	43,868	37,80	4	100	0,1	3° 18′	0,35	12,00	10,000	5,300	2,90 · 10 ⁻³
RPTS Tr 50x8	50	45,468	45,868	39,30	4	100	0,1	3° 10′	0,34	13,10	11,700	5,960	3,40 · 10 ⁻³
RPTS Tr 55x9	55	50,500	51,060	43,60	4,5	100	0,2	3° 25′	0,33	15,40	17,740	8,140	5,01 · 10 ⁻⁴
RPTS Tr 60x9	60	54,935	55,360	48,15	4,5	200	0,3	2° 57′	0,33	19,00	26,400	11,000	7,30 · 10 ⁻³
RPTS Tr 70x10	70	64,425	64,850	57,00	5	200	0,3	2° 48′	0,32	26,00	51,800	18,200	1,40 · 10 ⁻²
RPTS Tr 80x10	80	74,425	74,850	67,00	5	200	0,3	2° 25′	0,29	34,70	98,900	29,500	2,40 · 10 ⁻²

^{*}Irréversibilité à partir d'un angle d'hélice de $< 3^{\circ}$

Caractéristiques techniques générales

Vis à billes

Méthode de réalisation

Les vis à billes Neff sont obtenues par roulage à froid. Aussi bien la vis que l'écrou ont une gorge en profil gothique. L'angle de charge est de 45°.

Vitesse de rotation

La vitesse de rotation autorisée est de 3000 Rpm, pour certaine dimensions la vitesse peut atteindre 4500 Rpm. Cette vitesse maxi est uniquement possible dans des conditions de fonctionnement optimales

Position de montage

Il n'y a pas de contre indication pour le sens de montage d'une vis à billes. Néanmoins il faut s'assurer que les charges radiales sont reprises par des guidages externes.

Classes de précision des vis

P3 = Erreur de pas 12 µm/300 mm
P5 = Erreur de pas 23 µm/300 mm
T7 = Erreur de pas 52 µm/300 mm
T9 = Erreur de pas 130 µm/300 mm
T10 = Erreur de pas 200 µm/300 mm

Sans indication de votre part sur la commande, nous livrons la classe

Irréversibilité

Du fait du faible coefficient de roulement, la vis à billes est réversible. De ce fait pour un montage vertical un moteur adapté avec frein est nécessaire

Rendement

Le rendement d'une vis trapézoïdales est souvent < à 50%, pour la vis à billes le rendement peut atteindre 98%.

Durée d'enclenchement

La vis à billes permet d'atteindre une durée d'enclenchent jusqu'à 100%.

Néanmoins en cas de charge extrême, avec une durée d'enclenchement importante, la durée de vie peut être réduite.

Températures

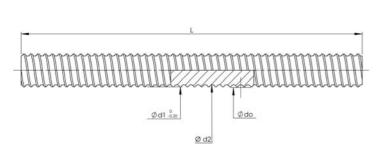
Toutes les vis à billes sont définies pour des températures ambiantes de -30° à +80°. En pointe, une température maxi de 110° peut être atteinte occasionnellement. Pour des températures négatives la vis à billes n'est pas le produit idéal.

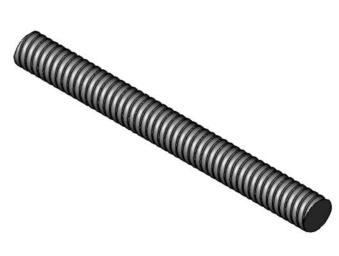
Répétabilité

La répétabilité définit l'exactitude de la vis à reproduire le même déplacement. Elle correspond à la dispersion moyenne de la position selon VDI/DGQ 3441. Elle est influencée entre autre par:

- la charge
- la vitesse
- l'accélération
- le sens du mouvement
- le température

Ambiance agressive

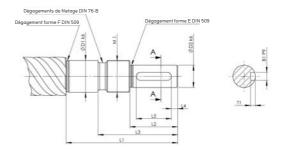

Pour les ambiances agressives ou poussiéreuses nous conseillons le montage de soufflets ou protecteurs à ressort.


Caractéristiques techniques

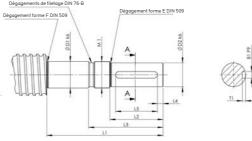
Vis à billes KGS

■ Profil :	Profil gothique
Diamètre:	
■ Pas:	
■ Nombre de filets :	
Sens de pas:	droite,
	KGS 2005 + 3205
	aussi gauche
Longueur:	Standard: 5600 mm
	KGS 1205: 2000 mm
■ Matière:	1.1213 (Cf 53)
	Piste à billes traitée HF ,polie,
	bout et noyaux de vis doux
■ Rectitude:	L < 500 mm: 0,05 mm/m
	L = 500 - 1000 mm: 0,08 mm/m
	L > 1000 mm: 0,1 mm/m
■ Droite/gauche:	uniquement KGS 2005 + 3205
Usinage des bouts de vis:	selon plan client

Vis à billes KGS

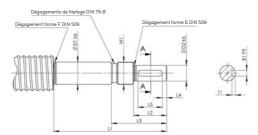


Type Diamètre [mm]	Classe de précision		Dimension	ns en [mm]		Charge linéaire W _{KGS}	Moment quadratique ly	Moment statique	Moment d'inertie de la
Pas [mm] droite	[µm/300 mm]	d_0	d ₁	d ₂	L max.	[kg/m]	[10 ⁴ mm ⁴]	[10 ³ mm ³]	masse [kg m²/m]
KGS-1205	50	12	11,5	10,1	2000	0,75	0,051	0,101	1,13 · 10 ⁻⁵
KGS-1605	50	16	15,5	12,9	5600	1,26	0,136	0,211	3,21 · 10 ⁻⁵
KGS-1610	50	16	15,4	13,0	5600	1,26	0,140	0,216	3,21 · 10 ⁻⁵
KGS-2005	50	20	19,5	16,9	5600	2,04	0,400	0,474	8,46 · 10 ⁻⁵
KGS-2020	50	20	19,5	16,9	5600	2,04	0,400	0,474	8,46 · 10 ⁻⁵
KGS-2050	50	20	19,1	16,5	5600	2,04	0,364	0,441	8,46 · 10 ⁻⁵
KGS-2505	50	25	24,5	21,9	5600	3,33	1,129	1,031	2,25 · 10 ⁻⁴
KGS-2510	50	25	24,5	21,9	5600	3,33	1,129	1,031	2,25 · 10 ⁻⁴
KGS-2520	50	25	24,6	22,0	5600	3,33	1,150	1,045	2,25 · 10 ⁻⁴
KGS-2525	50	25	24,5	22,0	5600	3,33	1,150	1,045	2,25 · 10 ⁻⁴
KGS-2550	50	25	24,1	21,5	5600	3,33	1,049	0,976	2,25 · 10 ⁻⁴
KGS-3205	50	32	31,5	28,9	5600	5,63	3,424	2,370	6,43 · 10 ⁻⁴
KGS-3210	50	32	32,7	27,3	5600	5,63	2,727	1,998	6,43 · 10 ⁻⁴
KGS-3220	50	32	31,7	27,9	5600	5,63	2,974	2,132	6,43 · 10 ⁻⁴
KGS-3240	50	32	30,9	28,3	5600	5,63	3,149	2,225	6,43 · 10 ⁻⁴
KGS-4005	50	40	39,5	36,9	5600	9,01	9,101	4,933	1,65 · 10 ⁻³
KGS-4010	50	40	39,5	34,1	5600	8,35	6,737	3,893	1,41 · 10 ⁻³
KGS-4020	50	40	39,7	35,9	5600	9,01	8,154	4,542	1,65 · 10 ⁻³
KGS-4040	50	40	38,9	36,3	5600	9,01	8,523	4,696	1,65 · 10 ⁻³
KGS-5010	50	50	49,5	44,1	5600	13,50	18,566	8,420	3,70 · 10 ⁻³
KGS-5020	50	50	49,5	44,1	5600	13,50	18,566	8,420	3,70 · 10 ⁻³
KGS-6310	50	63	62,5	57,1	5600	22,03	52,181	18,280	9,84 · 10 ⁻³
KGS-8010	50	80	79,65	74,2	5600	36,43	148,600	39,950	2,69 · 10 ⁻²
Disponible aussi à gauche									
KGS-2005 LH	50	20	19,5	16,9	5600	2,04	0,400	0,474	8,46 · 10 ⁻⁵
KGS-2505 LH	50	25	24,5	21,9	5600	3,33	1,129	1,031	2,25 · 10 ⁻⁴
KGS-3205 LH	50	32	31,5	28,9	5600	5,63	3,424	2,370	6,43 · 10 ⁻⁴

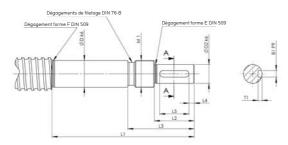

Usinage d'extremité pour palier fixe et libre

Forme D, F

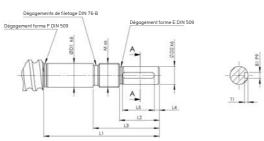
Les roulements influent directement sur la rigidité, la concentricité ainsi que sur le flambage de la vis à bille. Selon le type de roulement retenu, les usinages appropriés sont effectués.



Forme D		Dimensions [mm]								
TGS/GGS/KGS	D ₁	D_1 D_2 D_1 D_2 D_3 D_4 D_5 D_1 D_1 D_2								
Diamètre du noyaux $d_2 > d_1$	12	9	55	20	32	2,5	16	M 12x1	3x1,8	1255
	15 11 58 23 35 3,5 16 M 15x1 4x2,5								1560	
	20	14	70	30	44	4	22	M 20x1	5x3	2068
	25	19	82	40	57	6	28	M 25x1,5	6x3,5	2575
	30	24	92	50	67	7	36	M 30x1,5	8x4	3080



Forme F		Dimensions [mm]								
TGS/GGS/KGS	D ₁	D ₂	L ₁	L ₂	L ₃	L ₄	L ₅	M ₁	B ₁ xT ₁	ZARNLTN
Diamètre du noyaux $d_2 > d_1$	15	11	73	23	35	3,5	16	M 15x1	4x2,5	1545
	20	14	88	30	45	4	22	M 20x1	5x3	2052
	20	14	107	30	50	4	22	M 20x1	5x3	2062
	25	19	105	40	58	6	28	M 25x1,5	6x3,5	2557
	25	19	120	40	63	6	28	M 25x1,5	6x3,5	2572
	35	28	145	60	82	10	40	M 35x1,5	8x4	3585
	40	36	175	80	103	8,5	63	M 40x1,5	10x5	4090



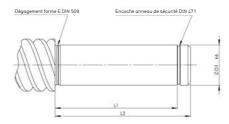
Usinage d'extremité pour palier fixe et libre Forme H, J, L, A

Forme H		Dimensions [mm]								
TGS/GGS/KGS	D ₁	D_1 D_2 D_1 D_2 D_3 D_4 D_5 D_1 D_1								ZARFLTN
Diamètre du noyaux $d_2 > d_1$	15	11	85	23	35	3,5	16	M 15x1	4x2,5	1560
	20	14	102	30	44	4	22	M 20x1	5x3	2068
	20	14	122	30	49	4	22	M 20x1	5x3	2080
	25	19	120	40	57	6	28	M 25x1,5	6x3,5	2575
	25	19	135	40	63	6	28	M 25x1,5	6x3,5	2590
	35	28	160	60	81	10	40	M 35x1,5	8x4	35110
	40	36	195	80	105	8,5	63	M 40x1,5	10x5	40115

Forme J	Dimensions [mm]									Roulement
TGS/GGS/KGS	D ₁	D_2	L ₁	L ₂	L ₃	L ₄	L ₅	M ₁	B ₁ xT ₁	FDX
Diamètre du noyaux $d_2 > d_1$	12	9	88	20	32	2,5	16	M 12x1	3x1,8	12
	15	11	92	23	35	3,5	16	M 15x1	4x2,5	15
	20	14	107	30	44	4	22	M 20x1	5x3	20
	25	19	122	40	57	6	28	M 25x1,5	6x3,5	25
	30	24	136	50	72	7	36	M 30x1,5	8x4	30
	40	36	182	80	102	8,5	63	M 40x1,5	10x5	40

Forme L		Dimensions [mm]									
TGS/GGS/KGS	D ₁	D_1 D_2 D_1 D_2 D_3 D_4 D_5 D_1 D_1 D_2									
Diamètre du noyaux d ₂ > d ₁	12	9	58	20	30	2,5	16	M 12x1	3x1,8	7201 BE RS	
	15	15 11 73 23 33 3,5 16 M 15x1 4x2,5									
	20	14	88	30	43	4	22	M 20x1	5x3	7204 BE RS	
	25	19	120	40	55	6	28	M 25x1,5	6x3,5	7205 BE RS	
	35	28	145	60	77	10	40	M 35x1,5	8x4	7207 BE RS	
	40	36	175	80	103	8,5	63	M 40x1,5	10x5	7208 BE RS	

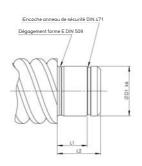
Forme A


Chanfrein 2 x 45°: KGS de Ø 12 – 25 mm Chanfrein 3 x 45°: KGS de Ø 26 – 40 mm Chanfrein 4 x 45°: KGS de Ø 44 – 50 mm

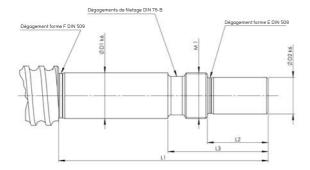
Usinage d'extremité pour palier fixe et libre

Forme S-W

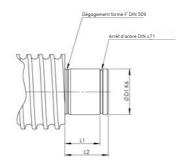
Forme S		Dimensions [mm]			
TGS/GGS/KGS	D ₁	L ₁	L ₂	Bague entretoise	Roulement
Diamètre du noyau $d_2 > d_1$	12	40	45	18x12,1x24	6001 RS
	15	46	51	21x15,1x28	6002 RS
	20	53	58	27x20,1x29	6004 RS
	25	53	58	32x25,1x23	6205 RS
	30	60	68	40x30,1x28	6206 RS
	40	80	88	50x40,1x44	6208 RS
	55	102	110	65x55,1x60	6211 RS

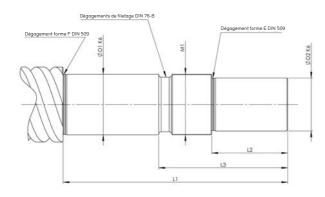


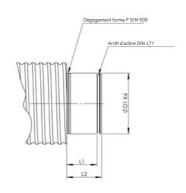
Forme T		Dimensions [mm]			
TGS/GGS/KGS	D ₁	L ₁	L ₂	Bague intérieure	Rlt. à aiguilles
Diamètre du noyau d ₂ > d ₁	12	40	45	2 IR 12x16x20	HK 1614 RS
	15	46	51	2 IR 15x20x23	HK 2018 RS
	20	53	58	2 LR 20x25x26,5	HK 2518 RS
	25	53	58	2 LR 25x30x26,5	HK 3018 RS
	30	60	68	2 LR 30x35x30	HK 3518 RS
	40	80	88	4 LR 40x45x20	HK 4518 RS


Forme G: bout de vis recuit selon indication client.

Forme K: version spéciale, bout de vis usiné selon plan client.


Forme W	Dir	ım]		
TGS/GGS/KGS	D ₁	L ₁	L ₂	Roulement
Diamètre du noyau $d_2 > d_1$	12	8	12	6001 RS
	15	9	13	6002 RS
	20	12	16	6004 RS
	25	15	20	6205 RS
	30	16	21	6206 RS
	40	18	25	6208 RS
	55	21	29	6211 RS


Usinage d'extremité Forme FK - FF - BK - BF


Designation	Ø D _{1 k6}	Ø D _{2 k6}	L ₁	L ₂	L ₃	M1
FK 6	6	4	38	8	16	M6x0,75
FK 8	8	6	44	9	19	M8x1
FK 10	10	8	51	15	26	M10x1
FK 12	12	10	51	15	26	M12x1
FK 15	15	12	69	20	33	M15x1
FK 20	20	17	89	25	42	M20x1
FK 25	25	20	106	30	50	M25x1,5
FK 30	30	25	110	38	63	M30x1,5

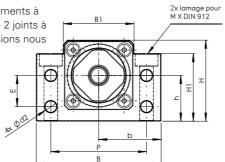
Designation	Ø D _{1 k6}	L ₂	L ₁
FF 10	8	10	7
FF 12	10	11	8
FF 15	15	13	9
FF 20	20	19	14
FF 25	25	20	15
FF 30	30	21	16

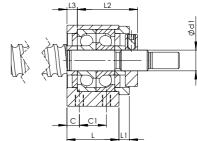
Designation	Ø D _{1 k6}	Ø D _{2 k6}	L ₁	L ₂	L ₃	M1
BK 10	10	8	54	15	31	M10x1
BK 12	12	10	54	15	29	M12x1
BK 15	15	12	60	20	32	M15x1
BK 17	17	15	76	23	40	M17x1
BK 20	20	17	78	25	40	M20x1
BK 25	25	20	95	30	48	M25x1,5
BK 30	30	25	110	38	63	M30x1,5
BK 35	35	30	128	45	73	M35x1,5
BK 40	40	35	148	50	85	M40x1,5

Bezeichnung	Ø D _{1 k6}	L ₂	L ₁
BF 10	8	10	7
BF 12	10	11	8
BF 15	15	13	9
BF 17	17	16	12
BF 20	20	19	14
BF 25	25	20	15
BF 30	30	21	16
BF 35	35	22	17
BF 40	40	23	18

Palier à roulement complet

Palier fixe complet

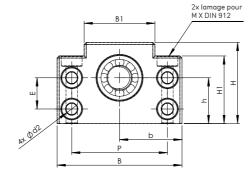

BK

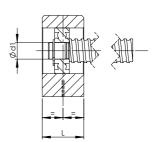

Cet ensemble est composé d'un roulement à contact oblique préchargé axialement avec joints d'étancheités.

L'ensemble est composé d'un palier en acier bruni, 2 roulements à contact oblique préchargés par l'intermediaire d'un flasque 2 joints à levre et un écrou de sécurité DRS (pour les petites dimensions nous livrons un écrou carré).

Taille	Ø d ₁	L	L ₁	L ₂	L ₃	C ₁	C_2	В	Н	b	h	B ₁	H ₁	Е	Р	Ø d ₂	M _X
BK 10	10	25	5	29	5	13	6	60	39	30	22	34	32,5	15	46	5,5	6
BK 12	12	25	5	29	5	13	6	60	43	30	25	35	32,5	18	46	5,5	6
BK 15	15	27	6	32	6	15	6	70	48	35	28	40	38	18	54	5,5	6
BK 17	17	35	9	44	7	19	8	86	64	43	39	50	55	28	68	6,6	8
BK 20	20	35	8	43	8	19	8	88	60	44	34	52	50	22	70	6,6	8
BK 25	25	42	12	54	9	22	10	106	80	53	48	64	70	33	85	9	10
BK 30	30	45	14	61	9	22	11	128	89	64	51	76	78	33	102	11	10
BK 35	35	50	14	67	12	26	12	140	96	70	52	88	79	35	114	11	12
BK 40	40	61	18	76	15	33	14	160	110	80	60	100	90	37	130	14	16

Palier libre complet

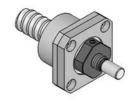

BF

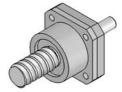

Cet ensemble est composé d'un palier avec un roulement à billes qui accepte la dilatation de la vis à billes.

L'ensemble est composé d'un palier en acier bruni ainsi que d'un roulement à billes.

Taille	Ø d ₁	L	В	Н	b	h	B ₁	H ₁	Е	Р	Ø d ₂	ΜX
BF 10	8	20	60	39	30	22	34	32,5	15	46	5,5	6
BF 12	10	20	60	43	30	25	35	32,5	18	46	5,5	6
BF 15	15	20	70	48	35	28	40	38	18	54	5,5	6
BF 17	17	23	86	64	43	39	50	55	28	68	6,6	8
BF 20	20	26	88	60	44	34	52	50	22	70	6,6	8
BF 25	25	30	106	80	53	48	64	70	33	85	9	10
BF 30	30	32	128	89	64	51	76	78	33	102	11	12
BF 35	35	32	140	96	70	52	88	79	35	114	11	12
BF 40	40	37	160	110	80	60	100	90	37	130	14	16

Palier à roulement complet

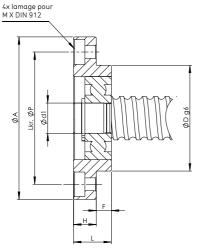

4x lamage pour M X DIN 912

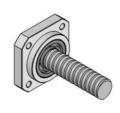

Palier fixe complet

FK

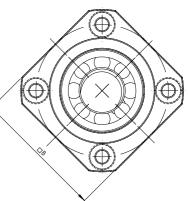
Cet ensemble est composé d'un palier flasque avec des roulements à contact oblique préchargé avec joints d'étancheités

L'ensemble est composé d'un palier en acier bruni ,2 roulements à billes à contact oblique préchargé par l'intermediare d'un flasque 2 joints et un écrou de securité BRS (pour les petites dimensions nous livrons un écrou carré).


Taille	Ø d ₁	L	Н	F	Е	D _{g6}	А	Lkr. ØP	В	L ₁	T ₁	M _X
FK 4	4	15	6	9	17,5	18	32	24	25	5,5	3	3
FK 5	5	16,5	6	10,5	18,5	20	34	26	26	5,5	3,5	3
FK 6	6	20	7	13	22	22	36	28	28	5,5	3,5	3
FK 8	8	23	9	14	26	28	43	35	35	7	4	3
FK 10	10	27	10	17	29,5	34	52	42	42	7,5	5	4
FK 12	12	27	10	17	29,5	36	54	44	44	7,5	5	4
FK 15	15	32	15	17	36	40	63	50	52	8	6	5
FK 20	20	52	22	30	50	57	85	70	68	10	10	6
FK 25	25	57	27	30	60	63	98	80	79	13	10	8
FK 30	30	62	30	32	61	75	117	95	93	11	12	10


Palier libre complet

FF


Cet ensemble est composé d'un palier flasque et d'un roulement à billes qui accepte la dilatation de la vis à billes.

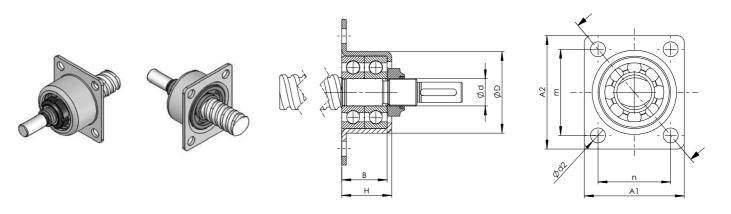
Cet ensemble est composé d'un palier en acier bruni avec 1 roulement à billes.

Taille	Ø d ₁	L	Н	F	D ₉₆	А	Lkr. Ø P	В	M _X
FF 6	6	10	6	4	22	36	28	28	3,4
FF 10	8	12	7	5	28	43	35	35	3,4
FF 12	10	15	7	8	34	52	42	42	4,5
FF 15	15	17	9	8	40	63	50	52	5,5
FF 20	20	20	11	9	57	85	70	68	6,6
FF 25	25	24	14	10	63	98	80	79	9
FF 30	30	27	18	9	75	117	95	93	11

Palier à roulement complet

Palier fixe complet

ZKLR

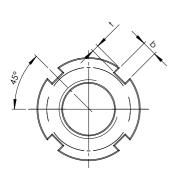

Cet ensemble est composé d'un ZKLR roulement Ina à contact oblique étanche avec 2 joints à lèvres.

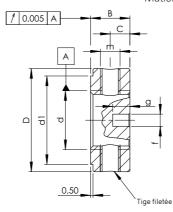
Le roulement est préchargé axialement et radialement, pourvu d'une grande réserve de graisse, le ZKLR est sans entretien pour la plupart des applications.

Le palier est réalisé en tôle avec un traitement anti corrosion.

Le roulement ZKLR est monté sans centrage et sans pièce complémentaire directement dans le palier tôle. Le centrage du roulement est réalisé à l'aide de l'écrou de la vis à billes. A travers cette méthode, il y a aucun effort supplémentaire sur le palier.

Cet ensemble est composé d'un palier tôle traité anti corrosion d'un roulement à contact oblique préchargé ,et d'un écrou de sécurité du type GUK.

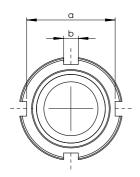


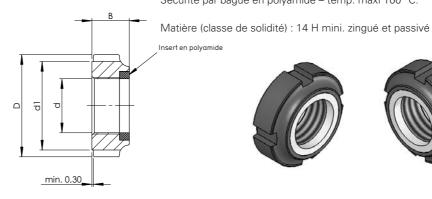

Taille	Ød	Ø D ^{+0,03} / _{-0,01}	A ₁	A ₂	n	m	Н	B _{-0,25}	Ø d ₂
ZKLR 12	12	35,45	44	50	32	38	22	20	6,6
ZKLR 15	15	38,45	47	51	35	39	24	22	6,6
ZKLR 20	20	50,45	60	60	47	47	30	28	6,6

Ecrous à gorges de sécurité

Il s'agit d'un écrou à gorge de sécurité, blocage par 2 goupilles radiales en bronze

Matière: acier min. 800 N/mm²



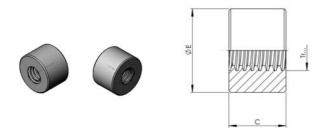


Taille	d	D	В	d			b			t	_	/NIm)
Tallie	d	D	D	d ₁	С	m	b	l	е	ı	g	(Nm)
DRS 6x0,5	M 6x0,5	16	8	12	4	M4	3	2	11	2,5	3,5	2
DRS 10x1	M 10x1	18	8	14	4	M4	3	2	14	2,5	3,5	6
DRS 12x1	M 12x1	22	8	18	4	M4	3	2	17	2,5	3,5	8
DRS 17x1	M 17x1	28	10	23	5	M5	4	2	22,5	3	4	15
DRS 20x1	M 20x1	32	10	27	5	M5	4	2	26	3	4	18
DRS 30x1,5	M 30x1,5	45	12	40	6	M6	5	2	37,5	4	5	32
DRS 45x1,5	M 45x1,5	65	14	59	7	M6	6	2,5				65
DRS 55x2	M 55x2	75	16	68	8	M6	7	3				95
DRS 60x2	M 60x2	80	16	73	8	M6	7	3				100
DRS 70x2	M 70x2	92	18	85	9	M8	8	3,5				130
DRS 80x2	M 80x2	105	18	95	9	M8	8	3,5				160
DRS 90x2	M 90x2	120	20	108	10	M8	10	4				200

GUK

Écrou à gorge de sécurité avec bague en polyamide. Sécurité par bague en polyamide – temp. maxi 100° C.

Taille	d	D	В	d1	а	b	(Nm)	Poids
GUK 12x1	M 12x1	21	7,6	18	18	3	8	10
GUK 15x1	M 15x1	24	8,6	21	21	4	10	13
GUK 20x1	M 20x1	32	9,6	27	27	4	18	24

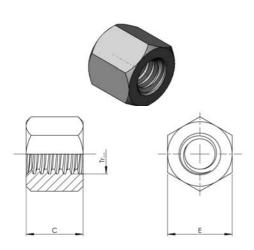

Écrou trapézoïdale TGM

Écrou cylindrique court en acier

Destiné au mouvement de serrage, de règlage manuel, ou de blocage a ne pas utiliser pour du positionnement.

Pour un usinage complémentaire utiliser le filetage comme référence.

Matière: Acier 1.0718 (9 SMn 28K).


Туре	E [mm]	C [mm]	Masse
KSM Tr 10x2	22	15	[kg] 0,037
KSM Tr 10x3	22	15	0,037
KSM Tr 12x3	26	18	0,064
KSM Tr 14x3	30	21	0,96
KSM Tr 14x4	30	21	0,96
KSM Tr 16x4	36	24	0,16
KSM Tr 18x4	40	27	0,22
KSM Tr 20x4	45	30	0,31
KSM Tr 22x5	45	33	0,33
KSM Tr 24x5	50	36	0,45
KSM Tr 26x5	50	39	0,47
KSM Tr 28x5	60	42	0,76
KSM Tr 30x6	60	45	0,79
KSM Tr 32x6	60	48	0,81
KSM Tr 36x6	75	54	1,5
KSM Tr 40x7	80	60	1,9
KSM Tr 44x7	80	66	2,7
KSM Tr 48x8	90	72	2,9
KSM Tr 50x8	90	75	2,7
KSM Tr 60x9	100	90	3,7
KSM Tr 70x10	110	105	4,9
KSM Tr 80x10	120	120	6,4

Écrou 6 pans SKM

Destiné au mouvement de serrage, de réglage manuel, ou de blocage. N'est pas adapté pour une utilisation dans des entraînements de mouvement, car la combinaison acier-acier a tendance de gripper.

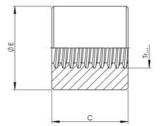
Pour un usinage complémentaire utiliser le filetage comme référence.

Matière: Acier 1.0718 (9 SMn 28K).

Туре	E	С	Masse
	[mm]	[mm]	[kg]
SKM Tr 10x2	17	15	0,022
SKM Tr 10x3	17	15	0,022
SKM Tr 12x3	19	18	0,028
SKM Tr 14x3	22	21	0,044
SKM Tr 14x4	22	21	0,044
SKM Tr 16x4	27	24	0,084
SKM Tr 18x4	27	27	0,086
SKM Tr 20x4	30	30	0,17
SKM Tr 22x5	30	33	0,17
SKM Tr 24x5	36	36	0,20
SKM Tr 26x5	36	39	0,20
SKM Tr 28x5	41	42	0,30
SKM Tr 30x6	46	45	0,43
SKM Tr 32x6	46	48	0,42
SKM Tr 36x6	55	54	0,73
SKM Tr 40x7	65	60	1,3
SKM Tr 44x7	65	66	1,2
SKM Tr 48x8	75	72	1,8
SKM Tr 50x8	75	75	1,8
SKM Tr 60x9	90	90	2,8
SKM Tr 70x10	90	105	3,1

Écrou trapezoidale TGM

Туре	E [mm]	C [mm]	Masse [kg]	Résistance à la rupture [mm²]
LRM Tr 10x2	22	20	0,056	200
LRM Tr 10x3	22	20	0,056	190
LRM Tr 12x3	26	24	0,092	280
LRM Tr 12x6 P3	26	24	0,092	280
LRM Tr 14x3	30	28	0,14	380
LRM Tr 14x4	30	28	0,14	370
LRM Tr 16x2	36	32	0,25	490
LRM Tr 16x4	36	32	0,25	490
LRM Tr 16x8 P4	36	32	0,25	490
LRM Tr 18x4	40	36	0,34	630
LRM Tr 20x4	45	40	0,48	790
LRM Tr 20x8 P4	45	40	0,45	790
LRM Tr 22x5	45	40	0,46	850
LRM Tr 22x24 P4S	45	40	0,46	880
LRM Tr 24x5	50	48	0,69	1130
LRM Tr 24x10 P5	50	48	0,65	1130
LRM Tr 26x5	50	48	0,58	1240
LRM Tr 28x5	60	60	1,2	1680
LRM Tr 30x6	60	60	1,2	1780
LRM Tr 30x12 P6	60	60	1,2	1780
LRM Tr 32x6	60	60	1,2	1910
LRM Tr 36x6	75	72	2,2	2610
LRM Tr 40x7	80	80	2,8	3210
LRM Tr 40x14 P7	80	80	2,8	3210
LRM Tr 44x7	80	80	2,6	3560
LRM Tr 48x8	90	100	4,3	4840
LRM Tr 50x8	90	100	4,2	5060
LRM Tr 60x9	100	120	5,7	7320
LRM Tr 70x10	110	140	7,6	10000
LRM Tr 80x10	120	160	9,7	13200

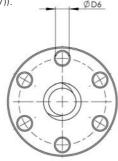

Écrou cylindrique long en bronze à canon LRM

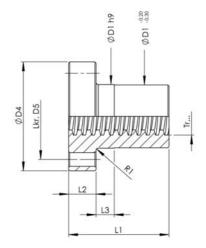
Bonne résistance à l'usure, il est destiné tout particulièrement à des mouvements de positionnement en continu. Convient comme écrou de sécurité.

Pour un usinage complémentaire utiliser le filetage comme référence.

Matière: 2.1090 (G-CuSn 7Zn Pb (Rg7))

Écrou trapézoïdale TGM

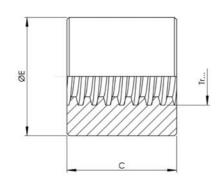

Écrou à flasque en bronze EFM


Bonne résistance à l'usure, il est destiné tout particulièrement à des mouvements de positionnement en continu. Convient comme écrou de sécurité.

L'écrou EFM peut être associé aux adaptateurs KON ou KAR.

Matière: 2.1090 (G-CuSn 7Zn Pb (Rg7)).

Туре				Masse	Résistance à la rupture				
	D ₁	D_4	D_{5}	6xD ₆	L ₁	L ₂	L ₃	[kg]	[mm ²]
EFM Tr 12x3	24	40	32	4,5	28	12	10	0,11	520
EFM Tr 16x4	28	48	38	6	44	12	8	0,25	670
EFM Tr 18x4	28	48	38	6	44	12	8	0,25	770
EFM Tr 20x4	32	55	45	7	44	12	8	0,30	870
EFM Tr 24x5	32	55	45	7	44	12	8	0,30	1040
EFM Tr 30x6	38	62	50	7	46	14	8	0,40	1370
EFM Tr 36x6	45	70	58	7	59	16	10	0,60	2140
EFM Tr 40x7	63	95	78	9	73	16	10	1,70	2930
EFM Tr 50x8	72	110	90	11	97	18	10	2,60	4900
EFM Tr 60x9	85	125	105	11	99	20	10	3,70	6040
EFM Tr 70x10	95	180	140	17	100	30	16	7,80	8250
EFM Tr 80x10	105	190	150	17	110	30	16	8,90	10890


Ebauche d'écrou Cylindrique en polyamide

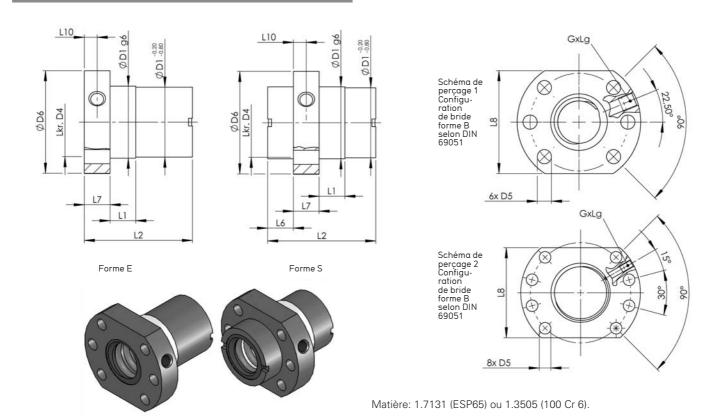
Pour un fonctionnement silencieux à vitesse et taux d'utilisation élevée. Particulièrement conseillé pour les vis trapézoïdales roulées. Bonnes propriétés en fonctionnement dégradé.

Matière : PETP

Pour la lubrification, nous conseillons le lubrifiant Neff NLUB60.

Туре	E [mm]	C [mm]	Masse [kg]	Résistance à la rupture [mm²]
LKM Tr 12x3	26	24	0,012	280
LKM Tr 12x6 P3	26	24	0,012	280
LKM Tr 16x4	36	32	0,032	490
LKM Tr 16x8 P4	36	32	0,032	490
LKM Tr 20x4	45	40	0,06	790
LKM Tr 20x8 P4	45	40	0,06	790
LKM Tr 24x5	50	48	0,088	1130
LKM Tr 30x6	60	60	0,15	1780
LKM Tr 30x12 P6	60	60	0,15	1780
LKM Tr 36x6	75	72	0,30	2610
LKM Tr 40x7	80	80	0,37	3210
LKM Tr 50x8	90	100	0,55	5060

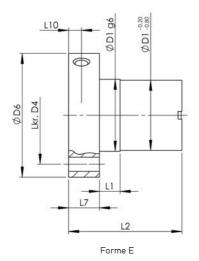
Écrou trapézoïdale TGM

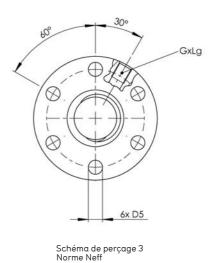

Caractéristiques matière

matière 2.1090

■ Limite d'allongement 0,2 % Rp 0,2:	120 N/mm ²
Limite élastique en traction $R_m(\delta B)$:	240 N/mm ²
Allongement à la rupture A5 min.:	15 %
Dureté Brinnell HB 10/1000:	65
Densité:	8,8 kg/dm ³
■ Module d'élasticité E:	90000 N/mm ³
■ Valeur ny maxi ·	300 N/mm ² · m/min

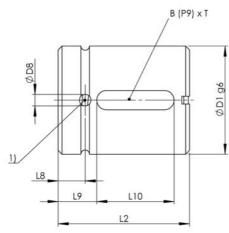
matière PETP	
Résistance à la traction:	80 N/mm ²
■ Module d'élasticité :	2800 – 3000 N/mm ²
Résilience:	40 kJm ²
■ Capacité d'absorption des chocs:	4 kJm ²
Dilatation thermique:	_ 8,5 · 10 ⁻⁵ /°C
Absorption d'eau:	0,25 %
Saturation d'eau:	0,6 %
■ Densité:	_ 1,38 kg/dm ³
Frottement sur l'acier:	
■ Dureté bille H 358/30:	_ 150 N/mm ²
Allongement sous effort de traction de 80 N/mm	² : 4 – 5 %
■ Valeur PV maxi :	100 N/mm ² · m/min
Pression spécifique maxi :	_ 10 N/mm ²
■ Vitesse de glissement maxi :	_ 120 m/min


Écrou à flasque KGF-D d'après DIN 69051

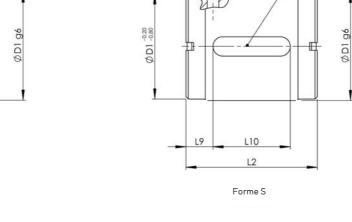

Туре		ab		Dimensions [mm]											Jeu	Nombre	Charg	es de ba	se [kN]
Diamétre [mm] Pas [mm] Droite	Forme	Plan de perçage	D ₁	D ₄	D_{5}	D_6	L ₁	L ₂	L ₆	L ₇	L ₈	L ₉	L ₁₀	Orifice de lubrifica- tion G	axial max [mm]	de circuits	C ²⁾	C ₃₎	C _o = C _{oa}
KGF-D 1605 RH-EE	Е	1	28	38	5,5	48	10	42	_	10	40	10	5	M 6	0,08	3	12,0	9,3	13,1
KGF-D 1610 RH-EE	Е	1	28	38	5,5	48	10	55	-	10	40	10	5	M 6	0,08	6	23,0	15,4	26,5
KGF-D 2005 RH-EE	Е	1	36	47	6,6	58	10	42	-	10	44	10	5	M 6	0,08	3	14,0	10,5	16,6
KGF-D 2505 RH-EE	Е	1	40	51	6,6	62	10	42	_	10	48	10	5	M 6	0,08	3	15,0	12,3	22,5
KGF-D 2510 RH-EE	Е	1	40	51	6,6	62	16	55	-	10	48	10	5	M 6	0,08	3	17,5	13,2	25,3
KGF-D 2520 RH-EE	S	1	40	51	6,6	62	4	35	10,5	10	48	8	5	M 6	0,15	4	19,0	13,0	23,3
KGF-D 2525 RH-EE	S	1	40	51	6,6	62	9	35	8	10	48	8	5	M 6	0,08	5	21,0	16,7	32,2
KGF-D 2550 RH-EE	S	1	40	51	6,6	62	10	58	10,0	10	48	8	5	M 6	0,15	5	22,5	15,4	31,7
KGF-D 3205 RH-EE	Е	1	50	65	9	80	10	55	-	12	62	10	6	M 6	0,08	5	24,0	21,5	49,3
KGF-D 3210 RH-EE ⁵⁾	Е	1	53 ¹⁾	65	9	80	16	69	_	12	62	10	6	M 8x1	0,08	3	44,0	33,4	54,5
KGF-D 3220 RH-EE	Е	1	53 ¹⁾	65	9	80	16	80	-	12	62	10	6	M 6	0,08	4	42,5	29,7	59,8
KGF-D 4005 RH-EE	Е	2	63	78	9	93	10	57	_	14	70	10	7	M 6	0,08	5	26,0	23,8	63,1
KGF-D 4010 RH-EE	Е	2	63	78	9	93	16	71	_	14	70	10	7	M 8x1	0,08	3	50,0	38,0	69,1
KGF-D 4020 RH-EE	Е	2	63	78	9	93	16	80	_	14	70	10	7	M 8x1	0,08	4	44,5	33,3	76,1
KGF-D 4040 RH-EE	S	2	63	78	9	93	16	85	7,5	14	_4)	10	7	M 8x1	0,08	8	42,0	35,0	101,9
KGF-D 5010 RH-EE	Е	2	75	93	11	110	16	95	_	16	85	10	8	M 8x1	0,08	5	78,0	68,7	155,8
KGF-D 5020 RH-EE	Е	2	85 ¹⁾	103 ¹⁾	11	125	22	95	-	18	95	10	9	M 8x1	0,08	4	82,0	60,0	136,3
Pas à gauche																			
KGF-D 2005 LH-EE	Е	1	36	47	6,6	58	10	42	-	10	44	10	5	M 6	0,08	3	16,5	10,5	16,6

 $^{^{1)}}$ D₁ differente que la DIN 69051. 2 DIN 69051 Capacité dynamique d'après extrait 4 version 1978. $^{3)}$ DIN 69051 Capacité dynamique d'après extrait 4 version 1978. $^{4)}$ Flasque rond. $^{5)}$ Égal. Dispo avec D1 de 50 mm.

Écrou à flasque KGF-N selon forme NEFF


Matière: 1.7131 (ESP65) ou 1.3505 (100 Cr 6).

Туре	Forme				[Dimensi	ons (mm	1]					Jeu axial	Nombre	Capacit	é de charç	ges [kN]
Diamétre [mm] Pas [mm]												Orifice de lubrification	max [mm]	de circuit			
Pas à droite		D ₁	D ₄	D_5	D ₆	L ₁	L ₂	L ₆	L ₇	L ₉	L ₁₀	G			C ¹⁾	C ²⁾	$C_o = C_{oa}$
KGF-N 1605 RH-EE	Е	28	38	5,5	48	8	44	_	12	8	6	M 6	0,08	3	12,0	9,3	13,1
KGF-N 2005 RH-EE	Е	32	45	7	55	8	44	_	12	8	6	M 6	0,08	3	14,0	10,5	16,6
KGF-N 2020 RH-EE	S	35	50	7	62	4	30	8	10	8	5	M 6	0,08	4	12,0	11,6	18,4
KGF-N 2050 RH-EE	S	35	50	7	62	10	56	8	10	8	5	M 6	0,15	5	18,0	13,0	24,6
KGF-N 2505 RH-EE	Е	38	50	7	62	8	46	-	14	8	7	M 6	0,08	3	15,0	12,3	22,5
KGF-N 3205 RH-EE	Е	45	58	7	70	10	59	_	16	8	8	M 6	0,08	5	24,0	21,5	49,3
KGF-N 3210 RH-EE	Е	53	68	7	80	10	73	-	16	8	8	M 8x1	0,08	3	44,0	33,4	54,5
KGF-N 3240 RH-EE	S	53	68	7	80	14	45	7,5	16	10	8	M 6	0,08	4	17,0	14,9	32,4
KGF-N 4005 RH-EE	Е	53	68	7	80	10	59	-	16	8	8	M 6	0,08	5	26,0	23,8	63,1
KGF-N 4010 RH-EE	Е	63	78	9	95	10	73	-	16	8	8	M 8x1	0,08	3	50,0	38,0	69,1
KGF-N 5010 RH-EE	Е	72	90	11	110	10	97	-	18	8	9	M 8x1	0,08	5	78,0	68,7	155,8
KGF-N 6310 RH-EE	Е	85	105	11	125	10	99	_	20	8	10	M 8x1	0,08	5	86,0	76,0	197,0

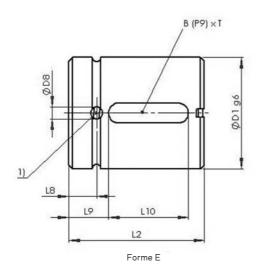

¹⁾ Capacité dynamique d'après norme DIN 69051 extrait 4 version 1978.
²⁾ Capacité dynamique d'après norme DIN 69051 extrait 4 version 1989.

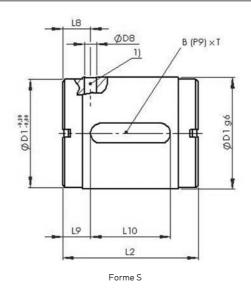
Écrou cylindrique KGM-D

selon norme DIN 69051

B (P9) x T

* cette mesure se trouve derrière la forme

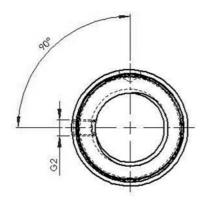

Matière: 1.7131 (ESP65) ou 1.3505 (100 Cr 6).


Type Diamétre [mm]	Forme			Dii	mensions [m	ım]		ı	Jeu axial max	Nombre de	Сарас	cité de charge	es [kN]
Pas [mm] Pas à droite		D ₁	D ₈	L ₂	L ₈	L ₉	L ₁₀	BxT	[mm]	circuit	C ²⁾	C ₃₎	$C_o = C_{oa}$
KGM-D 1605 RH-EE	Е	28	3	34	7	7	20	5x2	0,08	3	12,5	9,3	13,1
KGM-D 1610 RH-EE	Е	28	3	50	7	15	20	5x2	0,08	6	23,0	15,4	26,5
KGM-D 2005 RH-EE	Е	36	3	34	7	7	20	5x2	0,08	3	14,0	10,5	16,6
KGM-D 2505 RH-EE	Е	40	3	34	7	7	20	5x2	0,08	3	15,0	12,3	22,5
KGM-D 2510 RH-EE	Е	40	3	45	7,5	12,5	20	5x2	0,08	3	17,5	13,2	25,3
KGM-D 2520 RH-EE	S	40	1,5	35	14	11,5	12	5x3	0,15	4	19,0	13,0	23,3
KGM-D 2525 RH-EE	S	40	1,5	35	11,5	11	13	5x3	0,08	5	21,0	16,7	32,2
KGM-D 2550 RH-EE	S	40	1,5	58	17	19	20	5x3	0,15	5	22,5	15,4	31,7
KGM-D 3205 RH-EE	Е	50	3	45	7,5	8	30	6x2,5	0,08	5	24,0	21,5	49,3
KGM-D 4005 RH-EE	Е	63	3	45	7,5	8	30	6x2,5	0,08	5	26,0	23,8	63,1
KGM-D 4010 RH-EE	Е	63	4	60	10	15	30	6x2,5	0,08	3	50,0	38,0	69,1
KGM-D 4020 RH-EE	Е	63	3	70	7,5	20	30	6x2,5	0,08	4	44,5	33,3	76,1
KGM-D 4040 RH-EE	S	63	1,5	85	15	27,5	30	6x3,5	0,08	8	42,0	35,0	101,9
Pas à gauche													
KGM-D 2005 LH-EE	Е	36	3	34	7	7	20	5x2	0,08	3	16,5	10,5	16,6

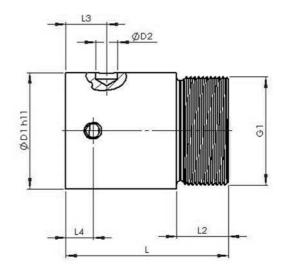
Position du trou de graissage pas définit.
 Capacité dynamique d'après norme DIN 69051 extrait 4 version 1978.
 Capacité dynamique d'après norme DIN 69051 extrait 4 version 1989.

Écrou cylindrique KGM-N

selon norme NEFF



Matière: 1.7131 (ESP65) ou 1.3505 (100 Cr 6).


Type Diamétre [mm] Pas [mm]	Forme		Dimensions [mm] Jeu axial Nombre Capacité de max de [mm] circuits										
Pas à droite		D ₁	D ₈	L ₂	L ₈	L ₉	L ₁₀	BxT	[IIIIII]	Circuits	C ²⁾	C ₃₎	C _o = C _{oa}
KGM-N 1205 RH-00	Е	20 ⁴⁾	-	24	_	5	14	3x1,8	0,08	3	6,0	4,4	6,8
KGM-N 2005 RH-EE	Е	32	3	34	7	7	20	5x2	0,08	3	14,0	10,5	16,6
KGM-N 2020 RH-EE	S	35	1,5	30	11,5	9	12	5x3	0,08	4	12,0	11,6	18,4
KGM-N 2050 RH-EE	S	35	1,5	56	16	18	20	5x3	0,15	5	18,0	13,0	24,6
KGM-N 2505 RH-EE	Е	38	3	34	7	7	20	5x2	0,08	3	15,0	12,3	22,5
KGM-N 3205 RH-EE	Е	45	3	45	7,5	8	30	6x2,5	0,08	5	24,0	21,5	49,3
KGM-N 3210 RH-EE	Е	53	4	60	10	15	30	6x2,5	0,08	3	44,0	33,4	54,5
KGM-N 3220 RH-EE	Е	53	3	70	7,5	20	30	6x2,5	0,08	4	42,5	29,7	59,8
KGM-N 3240 RH-EE	S	53 ⁵⁾	1,5	45	13	10	25	6x4	0,08	4	17,0	14,9	32,4
KGM-N 4005 RH-EE	Е	53	3	45	7,5	8	30	6x2,5	0,08	5	26,0	23,8	63,1
KGM-N 5010 RH-EE	Е	72	4	82	11	23	36	6x2,5	0,08	5	78,0	68,7	155,8
KGM-N 5020 RH-EE	Е	85	4	82	10	23	36	6x2,5	0,08	4	82,0	60,0	136,3
KGM-N 6310 RH-EE	Е	85	4	82	11	23	36	6x2,5	0,08	5	86,0	76,0	197,0

Position du trou de graissage pas définit.
 Capacité dynamique d'après norme DIN 69051 extrait 4 version 1978.
 Capacité dynamique d'après norme DIN 69051 extrait 4 version 1989.
 Écrou sans racleurs.
 D₁ -0,2/-0,8 supprimé et remplacé D₁ -1,0/-1,5.

Écrous à billes KGM-E

L'écrou peut être proposé en jeu réduit.

Matière: 16 MnCr 5 ou 100 Cr 6

Jeu axial: pas de P5 = 0.05

au dessus de P10 = 0.1mm

Taille					Dimensions [mm	1]			
	D1h11	D2	L	L2	L3	L4	G1	G2	W
KGM-E-1605-RH	32	3,2	42	12	3		M26x1,5		
KGM-E-2005-RH	38	8	45	14	8	8	M35x1,5	M6	90°
KGM-E-2505-RH	43	8	60	19	15	10	M40x1,5	M6	90°
KGM-E-2510-RH	43	8	74	19	16	16	M40x1,5	M6	180°
KGM-E-3205-RH	52	8	63	19	15	10	M48x1,5	M6	90°
KGM-E-3210-RH	54	8	78	19	8	8	M48x1,5	M6	90°
KGM-E-4005-RH	60	8	63	19	15	10	M56x1,5	M8x1	90°
KGM-E-4010-RH	65	8	84	24	15	8	M60x2	M8x1	90°
KGM-AE-5010-RH	78	8	111	29	15	8	M72x2	M8x1	90°

Le programme comprend en tout 11 vérins à vis, à savoir la série M 0 - M 5 avec des poussées entre 2,5 kN et 100 kN et la série J 1 - J 5 avec des poussées entre 150 kN et 500 kN statiques.

Vitesse de levage

Rapport H (haute vitesse)

Des vérins à vis avec vis trapézoïdale atteignent pour un tour de la vis une course de 1 mm. La vitesse linéaire s'élève en conséquence à 1500 mm/min pour 1500 tr/min. Des vérins à vis atteignent en fonction de la taille et du pas jusqu'à 6000 mm/min.

Rapport L

(petite vitesse)

Des vérins à vis avec vis trapézoïdale atteignent pour un tour de la vis une course de 0,25 mm. La vitesse linéaire s'élève en conséquence à 375 mm/min pour 1500 tr/min.

Veuillez noter que la vitesse peut être augmentée par des vis avec un pas plus important ou plusieurs rapports. La vitesse de rotation d'entraînement de 3000 tr/min ne doit pas être dépassée. Le rendement supérieur des entraînement à billes permet des durées de fonctionnement plus importants.

Tolérances et jeux

- Les boîtiers des engrenages sont traités sur les six pages faces. Les tolérances correspondent à la norme DIN ISO 2768-mH.
- Le jeu axial de la vis s'élève sous charge:
 - pour des vis trapézoïdales à : jusqu'à 0,4 mm (selon DIN 103)
 - pour des vis à billes : 0,07 mm.
- Le jeu radial entre le diamètre extérieur de la vis et le diamètre de guide s'élève à 0,2 mm.
- Le jeu de l'engrenage à vis sans fin s'élève pour le rapport L à ± 4°, pour rapport H à ± 1°, mesuré sur l'arbre d'entraînement.
- Les filetages trapézoïdaux sont fabriqués avec une rectitude de 0,3 à 1,5 mm/m, les vis à billes avec une rectitude de 0,02 mm/m sur une longueur de de 1000 mm et avec des précisions de pas suivants

 $M\ 0 - M\ 5 : 0.05\ mm/300\ mm\ longueur$ $J\ 1 - J\ 5 : 0.2\ mm/300\ mm\ longueur.$

Forces latérales sur la vis

Les vérins à vis peuvent supporter des forces latérales. Veuillez nous consulter.

Vérins à vis

Sécurité contre le dégagement A

La sécurité contre le dégagement évite le dégagement de la vis de l'engrenage. Ce dispositif est un équipement standard pour les vis à billes N et V et disponible en option pour des vérins à vis avec vis trapézoïdale.

La sécurité contre le dégagement ne peut pas être utilisée comme buttée

Irréversibilité

L'irréversibilité est influencée par plusieurs paramètres:

- par des pas importants
- par différents rapports de la vis sans fin
- par la lubrification
- par les paramètres de glissement
- par des influences de l'environnement, comme la température, des vibrations etc.
- par la situation de montage.

Pour cette raison, les modèles avec vis à billes et TGS/KGS avec des pas important ne disposent pas d'irréversibilité. Dans ces cas, il est nécessaire d'avoir recours à des freins ou des motofreneurs appropriés. Pour des petits pas (un filet), il existe une irréversibilité limitée.

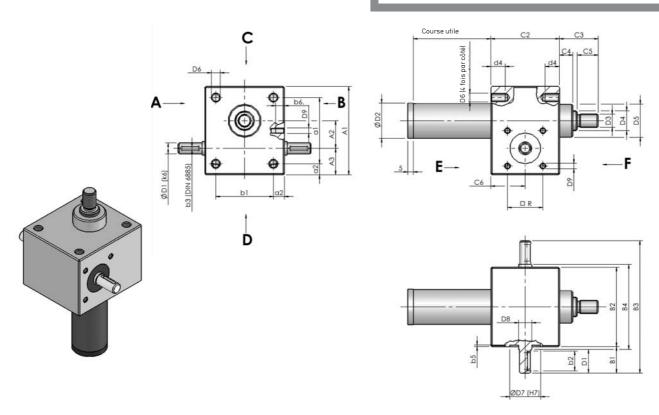
Modèles spéciaux

En plus de son vaste programme standard, NEFF peut livrer sur demande des vérins à vis avec une rotation dans le sens inverse des aiguilles d'une montre et avec des filetages à plusieurs filets.

Caractéristiques techniques générales Vérins à vis

Vis trapézoïdale

		M 0	M 1	M 2	M 3	M 4	M 5	J 1	J 2	J 3	J 4	J 5
Poussée max. [kN] ¹⁾		2,5	5	10	25	50	100	150	200	250	350	500
Diamètre et pas g [mm]		14 x 4	18 x 4	20 x 4	30 x 6	40 x 7	55 x 9	60 x 9	70 x 10	80 x 10	100 x 10	120 x 14
Course par rotation de	Rapp. H ²⁾	1	1	1	1	1	1	1	1	1	1	1
l'arbre d'entraînement [mm]	Rapp. L ²⁾	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
Rapport	Rapp. H ²⁾	4:1	4:1	4:1	6:1	7:1	9:1	9:1	10:1	10:1	10:1	14:1
	Rapp. L ²⁾	16:1	16:1	16:1	24:1	28:1	36:1	36:1	40:1	40:1	40:1	56:1
Rendement [%] ³⁾	Rapp. H ²⁾	35	31	29	29	26	24	23	22	20	19	19
	Rapp. L ²⁾	27	25	23	23	21	19	18	17	15	15	15
Poids [kg] (sans course)		0,6	1,2	2,1	6	17	32	41	57	57	85	160
Poids [kg par 100 mm de course]		0,1	0,26	0,42	1,14	1,67	3,04	3,1	4,45	6,13	7,9	11,5
Couple à vide [Nm]	Н	0,02	0,04	0,11	0,15	0,35	0,84	0,88	1,28	1,32	1,62	1,98
	L	0,016	0,03	0,10	0,12	0,25	0,51	0,57	0,92	0,97	1,10	1,42
Matière boîtier			G – AL					GGG	- 40			

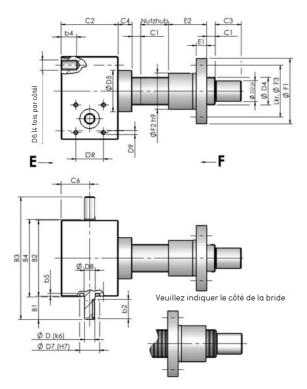

Vis à billes

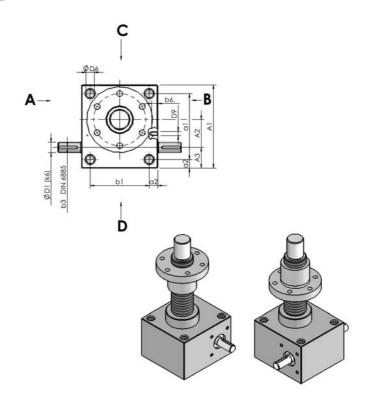
		M 0	M 1	M 2	M 3	M	4	M 5	J 3
Poussée max. [kN] ¹⁾		2	5	10	12,5	22	42	65	78
Diamètre et pas [mm]		1205	1605	2005	2505	4005	4010	5010	8010
Course par rotation de	Übers. H ²⁾	1,25	1,25	1,25	0,83	0,71	1,43	1,1	1
l'arbre d'entraînement [mm]	Übers. L ²⁾	0,31	0,31	0,31	0,21	0,18	0,36	0,28	0,25
Rapport	Übers. H ²⁾	4:1	4:1	4:1	6:1	7	:1	9:1	10:1
	Übers. L ²⁾	16:1	16:1	16:1	24:1	28	1:1	36:1	40:1
Rendement [%] ³⁾	Übers. H ²⁾	60	57	56	55	53	56	47	45
	Übers. L ²⁾	48	46	44	43	43	45	37	34
Poids [kg] (sans course)		0,6	1,3	2,3	7	1	9	35	63
Poids [kg par 100 mm de course]		0,09	0,26	0,42	1,14	1,	67	3,04	6,13
Couple à vide [Nm]	Н	0,02	0,04	0,11	0,15	0,	35	0,84	1,32
	L	0,016	0,03	0,10	0,12	0,	25	0,51	0,97
Matière boîtier			G – AL				GGG – 40		

Nota : couple de démarrage : env. é à 3 fois de le moment nominal en démarrage (fonct. FU)!

 ¹⁾ en fonction de la vitesse de levage, durée de fonctionnement etc
 2) H = vitesse de déplacement rapide,
 L = vitesse de déplacement lente.
 3) valeurs moyennes.

Dimensions, modèles N, V


Taille								Dir	mensions [mm]							
	A ₁	A ₂	A ₃	a ₁	a ₂	B ₁	B ₂	B ₃	B ₄	b ₁	b ₂	b ₃	b ₄	b ₅	C ₁	C_2	C ₃
M 0	60	20	18	48	6	21	50	92	52	38	14	3	12	1,5	20	50	27
M 1	80	25	24	60	10	24	72	120	77	52	18	3	13	1,5	20	62	35
M 2	100	32	28	78	11	27,5	85	140	90	63	20	5	15	1,5	30	75	45
M 3	130	45	31	106	12	45	105	195	110	81	36	5	15	2	35	82	50
M 4	180	63	39	150	15	47,5	145	240	150	115	36	6	16	2	40	117	65
M 5	200	71	46	166	17	67,5	165	300	170	131	56	8	30	2,5	55	160	95
J 1	210	71	49	170	20	65	195	325	200	155	56	8	40	8	55	175	95
J 2	240	80	60	190	25	67,5	220	355	225	170	56	8	45	8	60	165	110
J 3	240	80	60	190	25	67,5	220	355	225	170	56	8	45	8	60	165	110
J 4	290	100	65	230	30	65	250	380	255	190	56	10	54	8	65	220	140
J 5	360	135	75	290	35	100	300	500	305	230	90	14	80	8	100	266	200

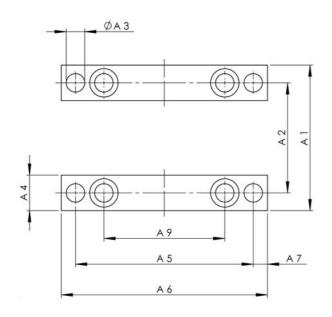

Taille							Di	mensions (mr	n]						
	C ₄	C ₅	C ₆	D _{1k6}	D_2	D_3	D ₄ Tr	D ₄ KGT	D_5	D_6	D ₇ H7	D ₈	$D_9 \times b_6$	TK 🗅 R	V-KGT
M 0	12	12	25	9 x 20	28	M8	Tr14 x 4	1205	26	M6	22	10	(M5 x 6)*	24	30 x 30
M 1	12	19	31	10 x 21,5	32	M12	Tr18 x 4	1605	30	M8	32	12	M5 x 6	32	35 x 35
M 2	18	20	37,5	14 x 25	40	M14	Tr20 x 4	2005	38,7	M8	35	15	M6 x 10	35	40 x 40
M 3	23	22	41	16 x 42,5	50	M20	Tr30 x 6	2505	46	M10	40	17	M8 x 10	44	50 x 50
M 4	32	29	58,5	20 x 45	65	M30	Tr40 x 7	4005/4010	60	M12	52	25	M10 x 14	55	65 x 65
M 5	40	48	80	25 x 65	90	M36	Tr55 x 9	5010	85	M20	62	28	M12 x 16	70	90 x 90
J 1	40	48	87,5	25 x 62,5	95	M48 x 2	Tr60 x 9	-	90	M24	72	28	M12 x 16	70	90 x 90
J 2	40	58	82,5	30 x 65	110	M56 x 2	Tr70 x 10	-	105	M30	80	32	M12 x 18	(80)	110 x 110
J 3 (M6)	40	58	82,5	30 x 65	125	M64 x 3	Tr80 x 10	8010	120	M30	80	32	M12 x 18	(80)	125 x 125
J 4 (M7)	50	78	110	35 x 62,5	150	M72 x 3	Tr100 x 10	-	145	M36	85	40	M16 x 30	(80)	150 x 150
J 5 (M8)	60	118	133	48 x 97,5	180	M100 x 3	Tr120 x 14	-	170	M42	90	50	M16 x 40	(115)	180 x 180

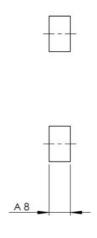
^{*} seulement point de centre

Remarque: sous réserve de modifications techniques

Dimensions, modèle R

Taille									Dim	ensions (ı	mml								
	A ₁	A ₂	A ₃	a₁	a ₂	B ₁	B ₂	B ₃	B ₄	b ₁	b ₂	b ₃	b ₄	b ₅	C ₁	C ₂	C ₃	C ₄	C ₆
M 0	60	20	18	48	6	21	50	92	52	38	14	3	12	1,5	10	50	12	12	25
M 1	80	25	24	60	10	24	72	120	77	52	18	3	13	1,5	12	62	15	12	31
M 2	100	32	28	78	11	27,5	85	140	90	63	20	5	15	1,5	15	75	20	18	37,5
M 3	130	45	31	106	12	45	105	195	110	81	36	5	15	2	20	82	25	23	41
M 4	180	63	39	150	15	47,5	145	240	150	115	36	6	16	2	25	117	30	32	58,5
M 5	200	71	46	166	17	67,5	165	300	170	131	56	8	30	2,5	25	160	45	40	80
J 1	210	71	49	170	20	65	195	325	200	155	56	8	40	8	25	175	55	40	87,5
J 2	240	80	60	190	25	67,5	220	355	225	170	56	8	45	8	25	165	70	40	82,5
J 3	240	80	60	190	25	67,5	220	355	225	170	56	8	45	8	25	165	75	40	82,5
J 4	290	100	65	230	30	65	250	380	255	190	56	10	54	8	25	220	100	50	110
J 5	360	135	75	290	35	100	300	500	305	230	90	14	80	8	30	266	120	60	133

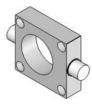

Taille								Dimensi	ons [mm]							
	D _{1k6}	D _{2j6}	D ₄ TR	D ₄ KGT	D_5	D ₆	D ₇ ^{H7}	D ₈	$D_9 \times b_6$	□R	E ₁	E ₂	F ₁	F_2	F ₃	F ₄
M 0	9 x 20	8	Tr14 x 4	1205	26	M6	22	10	M5 x 6*	24	12	35	48	28	38	6
M 1	10 x 21,5	12	Tr18 x 4	1605	30	M8	32	12	(M5 x 6)*	32	12/12	44/44	48/48	28/28	38/38	6/6
M 2	14 x 25	15	Tr20 x 4	2005	36,1	M8	35	15	M6 x 10	35	12/12	44/44	55/55	32/32	45/45	7/7
M 3	16 x 42,5	20	Tr30 x 6	2505	46	M10	40	17	M8 x 10	44	14/14	46/46	62/62	38/38	50/50	7/7
M 4	20 x 45	25	Tr40 x 7	4005/4010	60	M12	52	25	M10 x 14	55	16/16	73/59	95/80	63/53	78/68	9/7
M 5	25 x 65	40	Tr55 x 9	5010	85	M20	62	28	M12 x 16	70	18/18	97/97	110/110	72/72	90/90	11/11
J 1	25 x 62,5	45	Tr60 x 9	-	90	M24	72	28	M12 x 16	70	20	99	125	85	105	11
J 2	30 x 65	55	Tr70 x 10	-	105,2	M30	80	32	M12 x 18	(80)	30	100	180	95	140	17
J3 (M6)	30 x 65	60	Tr80 x 10	8010	120	M30	80	32	M12 x 18	(80)	30/22	110/101	190/145	105/105	150/125	17/14
J4 (M7)	35 x 62,5	80	Tr100 x 10	-	145	M36	85	40	M16 x 30	(80)	35	130	240	130	185	25
J 5 (M 8)	48 x 97,5	95	Tr120 x 14	_	170	M42	90	50	M16 x 40	(115)	40	160	300	160	230	28


^{*} seulement point de centre

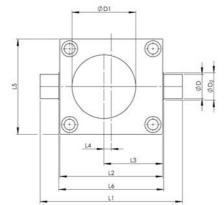
Remarque: sous réserve de modifications techniques

Fixations

Réglettes de fixation BL-L Livrées détachées avec les vis de fixation pour l'engrenage. Brunies. M 1 + 2 avec N-KGT pas sur le côté F. Côté standard : E.

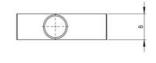

Taille					Dimensions [mm]					Poids
	A ₁	A ₂	A_3	A ₄	A_5	A_6	A ₇	A ₈	A ₉	[kg]
L M 0	50	38	6,5	12	75	90	7,5	10	48	0,1
L M 1	72	52	8,5	20	100	120	10	10	60	0,3
L M 2	83	63	8,5	20	120	140	10	10	78	0,4
L M 3	105	81	11	24	150	170	10	12	106	0,8
L M 4	145	115	13,5	30	204	230	13	16	150	1,7
L M 5	171	131	22	40	236	270	17	25	166	3,9
LJ1	205	155	26	50	250	290	20	30	170	5,8
LJ2	235	170	32	65	290	340	25	40	190	10
LJ3	235	170	32	65	290	340	25	40	190	10
LJ4	270	190	39	80	350	410	30	50	230	20,8
LJ5	330	230	45	100	430	500	35	60	290	34,4

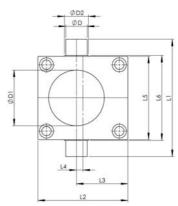
Fixations


Adaptateur à cardan KA-ZL (longitudinal)

vis de fixation pour l'engrenage. Bruni.

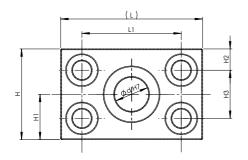
Côté d'installation standard : E, veuillez indiquer le côté de montage F.

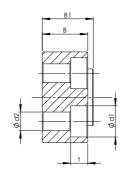

							ware		55 24	
Longitudinal										
	L ₁	L ₂	L ₃	L ₄	L ₅	L ₆	ØD _{f8}	ØD ₁	Ø D ₂	В
M 0	80	60	38	8	50	64	10	30	13	15
M 1	110	80	49	9	72	84	15	35	18	20
M 2	140	100	60	10	85	104	20	45	23	25
M 3	170	130	76	11	105	134	25	55	28	30
M 4	240	180	102	12	145	184	35	70	38	40
M 5	270	200	117	17	165	204	45	95	48	50
J 1	290	210	120	15	195	214	50	100	56	60
J 2	330	240	140	20	220	244	70	115	76	80
J 3	330	240	140	20	220	244	70	130	76	80
J 4	410	290	165	20	250	294	80	155	88	90
J 5	520	360	210	30	300	364	90	185	96	100

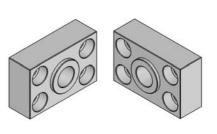

Adaptateur à cardan KA-ZQ (transversal)

vis de fixation pour l'engrenage. Bruni.

Côté d'installation standard : E, veuillez indiquer le côté de montage F.

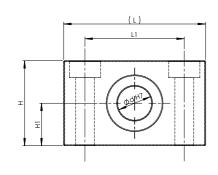


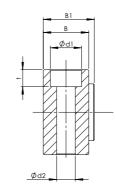


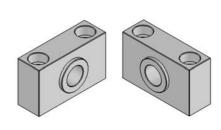

Transversal										
	L ₁	L ₂	L ₃	L ₄	L ₅	L ₆	Ø D _{f8}	ØD ₁	Ø D ₂	В
M 0	70	60	38	8	50	54	10	30	13	15
M 1	102	80	49	9	72	76	15	35	18	20
M 2	125	100	60	10	85	89	20	45	23	25
M 3	145	130	76	11	105	109	25	55	28	30
M 4	205	180	102	12	145	149	35	70	38	40
M 5	235	200	117	17	165	169	45	95	48	50
J 1	289	210	120	15	195	199	50	100	56	60
J 2	313	240	140	20	220	224	70	115	76	80
J3	313	240	140	20	220	224	70	130	76	80
J 4	370	290	165	20	250	254	80	155	88	90
J 5	460	360	210	30	300	304	90	185	96	100

Paliers à cardan

Flasque pour palier à cardan pour le support d'un palier à cardan ou d'un palier d'articulation.

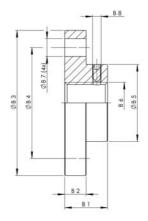






Taille	Ø d ^{H7}	Ø d ₁	Ø d ₂	t	В	B ₁	Н	H ₁	H ₂	H ₃	L	L ₁
KLF-0	10	11	6,6	6,8	16	18	32	16	7,5	17	50	35
KLF-1	15	15	9	9	20	22	36	18	9	18	65	45
KLF-2	20	15	9	9	20	23	40	20	10	20	70	50
KLF-3	25	18	11	11	20	22,5	54	27	12	30	80	58
KLF-4	35	20	13,5	13	30	35	70	35	15	40	100	70
KLF-5	45	33	22	21,5	40	43	80	40	20	40	140	100
KLF-200	70	48	33	32	50	58	125	62,5	30	65	220	160
KLF-300	80	57	39	38	62	70	144	72	34	76	245	180
KLF-400	80	57	39	38	62	70	144	72	34	76	245	180
KLF-500	90	66	45	44	80	90	160	80	40	80	28	200

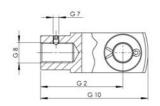
Chaise de palier à cardan pour le support d'un adaptateur à cardan ou d'un palier d'articulation..

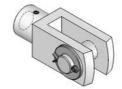

Taille	Ø d ^{H7}	Ø d ₁	Ø d ₂	t	В	B ₁	Н	H ₁	L	L ₁
KLB-0	10	11	6,6	6,8	16	18	30	15	50	35
KLB-1	15	15	9	9	20	22	34	17	65	45
KLB-2	20	15	9	9	20	23	38	19	70	50
KLB-3	25	18	11	11	20	22,5	54	27	80	58
KLB-4	35	20	13,5	13	30	35	70	35	100	70
KLB-5	45	33	22	21,5	40	43	80	40	140	100
KLB-200	70	48	33	32	63	71	124	62	220	160
KLB-300	80	57	39	38	63	71	144	72	245	180
KLB-400	80	57	39	38	63	71	144	72	245	180
KLB-500	90	66	45	44	80	90	160	80	280	200

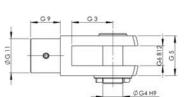
Accessoires

Plaque de fixation BP Est vissé sur le filetage de fixation de la vis et sécurisée contre la

Standard: schéma de perçage symétrique au boîtier SHG Nota: indiquer l'orientation pour le modèle V.

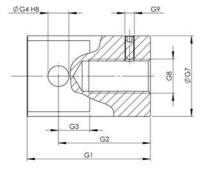


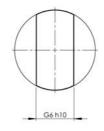

Taille				Dimensi	ons [mm]				Poids
	B ₁	B ₂	Ø B ₃	B ₄	B ₅	B ₆	B _{7 x 4}	B ₈	[kg]
BP M 0	16	6	50	40	26	M8	7	M4	0,1
BP M 1	20	7	65	48	30	M12	9	M5	0,2
BP M 2	21	8	80	60	38,7	M14	11	M6	0,3
BP M 3	23	10	90	67	46	M20	11	M8	0,6
BP M 4	30	15	110	85	60	M30	13	M8	1,2
BP M 5	50	20	150	117	85	M36	17	M10	4,8
BP J 1	50	25	170	130	90	M48 x 2	21	M10	5
BP J 2	60	30	200	155	105	M56 x 2	25	M12	7,7
BP J 3	60	30	220	170	120	M64 x 3	25	M12	9,8
BP J 4	80	40	260	205	145	M72 x 3	32	M12	18,4
BP J 5	120	40	310	240	170	M100 x 3	38	M12	29,6

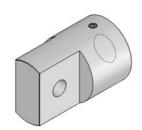

Fourche GK

Est vissée sur le filetage de fixation de la vis et sécurisée contre la rotation. Livrée avec goupille et boulon à collerette. Standard : position du boulon à collerette parallèle à l'arbre d'entraînement.

Nota: indiquer l'orientation pour le modèle V.



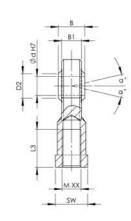

Taille	Dimensions [mm]										Poids
	G_2	G_3	G ₄ H9	G ₅ k	G ₆ B12	G ₇	G ₈	G ₉	G ₁₀	G ₁₁	[kg]
GK M 0	32	16	8	16	8	M4	M8	12	42	14	0,04
GK M 1	48	24	12	24	12	M5	M12	18	62	20	0,15
GK M 2	56	28	14	28	14	M6	M14	22	72	24,5	0,2
GK M 3	80	40	20	40	20	M8	M20	30	105	34	0,8
GK M 4	120	60	30	60	30	M8	M30	43	160	52	2,5
GK M 5	144	72	35	70	35	M10	M36	54	188	60	3,8


Accessoires

Bossage de l'articulation GA Vissé sur le filetage de fixation de la vis et sécurisé contre la

Standard: position du perçage transversale parallèle à l'arbre d'entrainement. Nota: indiquer l'orientation pour le modèle V.





Taille	Dimensions [mm]									
	G ₁	G_2	G_3	G ₄ H8	G ₆ H10	G ₇	G ₈	G_9	[kg]	
GA M 0	40	30	10	8	12	25	M8	M4	0,1	
GA M 1	55	40	15	10	15	30	M12	M5	0,2	
GA M 2	63	45	18	12	20	39	M14	M6	0,3	
GAM3	78	53	20	16	30	45	M20	M8	0,6	
GA M 4	100	70	30	20	35	60	M30	M8	1,2	
GA M 5	130	97	33	22	40	85	M36	M10	2,5	
GA J 1	120	75	45	40	60	90	M48 x 2	M10	4,8	
GAJ2	130	90	50	50	70	105	M56 x 2	M12	4,8	
GAJ3	155	105	60	60	80	120	M64 x 3	M12	8,0	
GAJ4	220	135	85	80	110	145	M72 x 3	M12	22,5	
GA J 5	300	200	100	90	120	170	M100 x 3	M12	31,5	

Tête de joint articulé de haute performance HG



Cote	Ød ^{H7}	M	В	B1	D	D1	D2	L	L1	L2	L3	SW	Co / (KN)	Angle (°)	Poids
HG-0	10	M 10	14	10,5	28	19	12,9	57	43	6,5	20	17	17,65	13	0,076
HG-1	12	M 12	16	12	32	22	15,4	66	50	6,5	22	19	20,6	13	0,115
HG-2	14	M 14	19	13,5	36	25	16,8	75	57	8	25	22	29,4	15	0,17
HG-3	20	M 20x1,5	25	18	50	34	24,3	102	77	10	33	32	49,1	15	0,415
HG-4	30	M 30x2	37	25	70	50	34,8	145	110	15	51	41	99,1	15	1,13
HG-5	35	M 36x2	43	28	80	58	37,7	165	125	17	65	50	125	15	1,6
HG-6	70	M 56x4	49	42	160	98	92	280	200	20	80	85	630	6	8,4

Protecteur à ressort

Protecteur à ressort pour la protection contre des influences de l'environnement. Adapté pour une montage horizontal ou vertical.

Matière: acier feuillard durci.

Pour KGT 1605

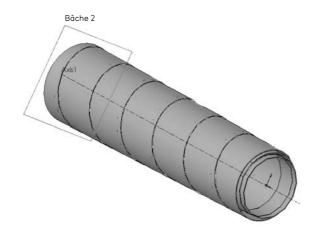
$D_3 = 22 \text{ mm}$ $D_{10} = 16.8 \text{ mm}$ $L_9 = 20 \text{ mm}$			
Designation D ₈ /Course/L ₈	L _{7v} ¹⁾	L _{7h} ²⁾	D_9
SF 25/100/20	100	60	35
SF 25/150/20	150	110	38
SF 25/200/20	200	160	40
SF 25/250/20	250	210	44
SF 25/300/30	300	240	43
SF 25/350/30	350	290	46
SF 25/400/30	400	340	49
SF 25/450/40	450	370	48
SF 25/500/40	500	420	51

Pour KGT 2005 **KGT 2020** (KGT 2505)

$D_3 = 26 (31) \text{ mm}$ $D_{10} = 20.8 (25.8) \text{ mm}$ $L_9 = 28 (28) \text{ mm}$									
Designation D ₈ /Course/L ₈	L _{7v} ¹⁾	L _{7h} ²⁾	D_9						
SF 30/150/30	150	90	39						
SF 30/250/30	250	190	44						
SF 30/350/30	350	290	49						
SF 30/450/40	450	370	53						
SF 30/550/40	550	470	58						
SF 30/650/50	650	550	55						
SF 30/750/50	750	650	59						

Pour KGT 3205 **KGT 3240**

 $D_3 = 38 \text{ mm}$


$D_{10} = 33 \text{ mm}$ $L_9 = 35 \text{ mm}$	_		
Designation D ₈ /Course/L ₈	L _{7v} ¹⁾	L _{7h} ²⁾	D ₉
SF 40/150/30	150	90	51
SF 40/250/30	250	190	56
SF 40/350/30	350	290	60
SF 40/450/40	450	370	63
SF 40/550/40	550	470	68
SF 40/350/50	350	250	55
SF 40/450/50	450	350	58
SF 40/550/50	550	450	61
SF 40/650/50	650	550	65
SF 40/750/50	750	650	69
SF 40/450/60	450	330	55
SF 40/550/60	550	430	58
SF 40/650/60	650	530	62
SF 40/750/60	750	630	66

Pour KGT 3205 **KGT 3240**

$D_3 = 38 \text{ mm}$ $D_{10} = 33 \text{ mm}$ $L_9 = 35 \text{ mm}$			
Designation D ₈ /Course/L ₈	L _{7v} ¹⁾	L _{7h} ²⁾	D_9
SF 40/900/60	900	780	70
SF 40/650/75	650	500	62
SF 40/750/75	750	600	66
SF 40/900/75	900	750	72
SF 40/1100/78	1100	950	78
SF 40/1300/75	1300	1150	84
SF 40/1500/75	1500	-	90
SF 40/1000/100	1000	800	66
SF 40/1200/100	1200	1000	70
SF 40/1500/100	1500	1300	78
SF 40/1800/100	1800	-	82
SF 40/1800/120	1800	1560	82
SF 40/2000/120	2000	1760	86
SF 40/2200/120	2200	_	91

 $^{^{1)}}$ $L_{7v} = L_7$ Montage vertical $^{2)}$ $L_{7h} = L_7$ Montage horizontal

Protecteur à ressort

Pour KGT 4005 (KGT 3210)

D ₃ = 46 (44) mm D ₁₀ = 41 (34) mm L ₉ = 45 (45) mm			
Designation D ₈ /Course/L ₈	L _{7v} ¹⁾	L _{7h} ²⁾	D ₉
SF 50/150/30	150	90	63
SF 50/250/30	250	190	68
SF 50/250/50	250	150	62
SF 50/350/50	350	250	66
SF 50/450/50	450	350	70
SF 50/550/50	550	450	73
SF 50/550/60	550	430	68
SF 50/650/60	650	530	72
SF 50/750/60	750	630	76
SF 50/750/75	750	600	78
SF 50/900/75	900	750	84
SF 50/1100/75	1100	950	90
SF 50/1100/50	1100	900	75
SF 50/1300/100	1300	1100	79
SF 50/1500/100	1500	1300	83
SF 50/1700/120	1700	1460	91
SF 50/1800/120	1800	-	94
SF 50/1900/120	1900	1660	95
SF 50/2100/120	2100	1860	100
SF 50/2300/120	2300	-	105
SF 50/2500/120	2500	-	111
SF 50/2800/120	2800	ı	118
SF 50/2800/150	2800	2500	118
SF 50/3000/150	3000	_	123
SF 50/3000/180	3000	2640	123
SF 50/3250/180	3250	_	128
SF 50/3250/200	3250	2850	128
SF 50/3250/200	3250	_	134

Pour KGT 4010

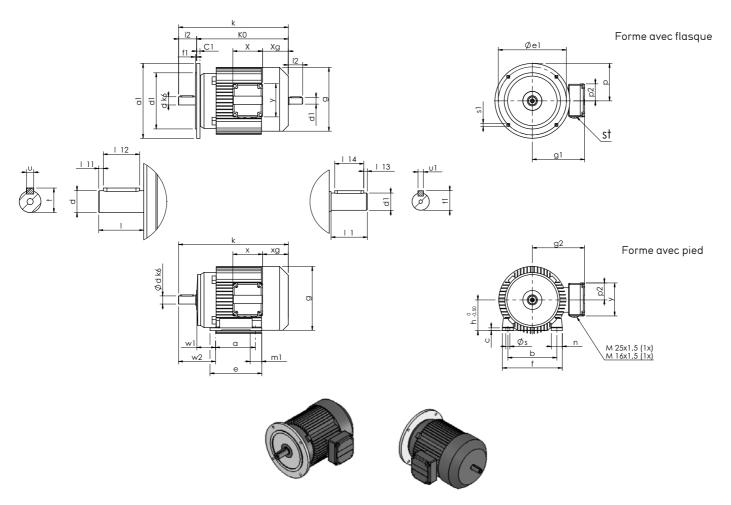
$D_3 = 52 \text{ mm}$ $D_{10} = 41 \text{ mm}$ $L_9 = 50 \text{ mm}$			
Designation	. 1)	l . a	
D ₈ /Course/L ₈	L _{7v} ¹⁾	L _{7h} ²⁾	D ₉
SF 55/150/30	150	90	68
SF 55/250/30	250	190	73
SF 55/250/50	250	150	66
SF 55/350/50	350	250	71
SF 55/450/50	450	350	74
SF 55/550/50	550	450	77
SF 55/550/60	550	430	75
SF 55/650/60	650	530	79
SF 55/750/60	750	630	83
SF 55/750/75	750	600	83
SF 55/900/75	900	750	89
SF 55/1100/75	1100	950	94
SF 55/1100/100	1100	900	83
SF 55/1300/100	1300	1100	87
SF 55/1500/100	1500	1300	94
SF 55/1800/120	1800	-	102
SF 55/1700/120	1700	1460	96
SF 55/1900/120	1900	1660	100
SF 55/2100/120	2100	1860	105
SF 55/2300/120	2300	2060	110
SF 55/2500/120	2500	-	116
SF 55/2800/150	2800	2500	121
SF 55/2800/120	2800	_	123
SF 55/3000/150	3000	2640	126
SF 55/3000/180	3000	-	126
SF 55/3250/180	3250	2850	130
SF 55/3250/200	3250	-	130
SF 55/3250/200	3250	-	137

Pour KGT 5010

$D_3 = 62 \text{ mm}$ $D_{10} = 51,2 \text{ mm}$ $L_9 = 55 \text{ mm}$			
Designation D ₈ /Course/L ₈	L _{7v} ¹⁾	L _{7h} 2)	D ₉
SF 65/250/30	250	90	85
SF 65/250/50	250	150	76
SF 65/350/50	350	250	83
SF 65/450/50	450	350	88
SF 65/550/60	550	430	88
SF 65/650/60	650	530	92
SF 65/750/60	750	630	95
SF 65/750/75	750	600	93
SF 65/900/75	900	750	99
SF 65/1100/75	1100	950	107
SF 65/1100/100	1100	900	95
SF 65/1300/100	1300	1100	99
SF 65/1500/100	1500	1300	108
SF 65/1700/120	1700	1460	106
SF 65/1800/100	1800	_	117
SF 65/1900/120	1900	1660	109
SF 65/2100/120	2100	1860	113
SF 65/2300/120	2300	2060	118
SF 65/2500/150	2500	-	132
SF 65/2800/120	2800	_	128
SF 65/2800/150	2800	-	132
SF 65/3000/150	3000	_	142
SF 65/3000/180	3000	-	136
SF 65/3250/180	3250	_	145
SF 65/3250/200	3250	2850	138

Pour KGT 6310

$D_3 = 74 \text{ mm}$ $D_{10} = 63,2 \text{ mm}$ $L_9 = 65 \text{ mm}$			
Designation D ₈ /Course/L ₈	L _{7v} 1)	L _{7h} ²⁾	D ₉
SF 75/250/30	250	190	99
SF 75/250/50	250	150	89
SF 75/350/50	350	250	94
SF 75/450/50	450	350	101
SF 75/550/60	550	430	99
SF 75/650/60	650	530	103
SF 75/750/60	750	630	108
SF 75/650/75	650	500	99
SF 75/750/75	750	600	104
SF 75/900/75	900	750	111
SF 75/1100/100	1100	900	108
SF 75/1300/100	1300	1100	112
SF 75/1500/100	1500	1300	120
SF 75/1500/120	1500	1260	115
SF 75/1700/100	1700	_	126
SF 75/1800/120	1800	1560	122
SF 75/2000/120	2000	1760	127
SF 75/2200/120	2200	_	132
SF 75/2000/150	2000	1700	135
SF 75/2400/150	2400	2100	141
SF 75/2800/150	2800	-	145
SF 75/2800/180	2800	2440	142
SF 75/3000/180	3000	_	148
SF 75/3250/180	3250	_	156
SF 75/3250/200	3250	2850	148
SF 75/3500/200	3500	_	158


 $^{^{1)}}$ L_{7v} = L_{7} Montage vertical $^{2)}$ L_{7h} = L_{7} Montage horizontal

Moteurs triphasés M

Moteurs triphasés à 4 pôles (1500 tr/min) de type fermé avec aération de surface selon VDE 0530, part 1. Type de protection standard IP55, classe de chaleur F. D'autre moteurs SEW sur demande.

Remarques: Si l'extrémité libre de l'arbre de moteur est utilisée comme arbre pour une manivelle de secours, il est nécessaire d'installer un dispositif qui coupe l'alimentation électrique avant que la manivelle soit engrenée.

Des moteurs avec d'autres régimes, ainsi que des motofreineurs, sont disponibles sur demande.

Données de puissance

Taille	Puissance	Régime	Facteur de	Courant	Cour. démar.	Couple	Couple	Couple	Couple	Couple	Couple de
	nominale	nominall	puis.	nom. pour 400 V	relative	nom.	démarr. relatif	d'accel. relatif	d'inertie J _{Mot}	d'inertieJ _{freinage}	freinage
	[kW]	[1/min]	cos φ	[A]	I _A /I _N	[Nm]	M_A/M_N	M_H/M_N	[10 ⁻⁴ kgm ²]	[10 ⁻⁴ kgm ²]	[Nm]
DT71K4	0,15	1380	0,67	0,61	2,9	1,0	1,8	1,7	4,6	5,5	5,0
DT71C4	0,25	1380	0,70	0,80	2,8	1,7	1,8	1,7	4,6	5,5	5,0
DT71D4	0,37	1380	0,76	1,15	3,0	2,6	1,8	1,7	4,6	5,5	5,0
DT80K4	0,55	1360	0,72	1,75	3,4	3,9	2,1	1,8	7,5	7,5	10
DT80N4	0,75	1380	0,73	2,1	3,8	5,2	2,2	2,0	8,7	9,6	10
DT90S4	1,1	1400	0,77	2,8	4,3	7,5	2,0	1,9	25	31	20
DT90L4	1,5	1410	0,78	3,55	5,3	10,2	2,6	2,3	34	40	20
DV100M4	2,2	1410	0,83	4,7	5,9	15,0	2,7	2,3	53	59	40
DV100L4	3,0	1400	0,83	6,3	5,6	20,5	2,7	2,2	65	71	40
DV112M4	4,0	1420	0,84	8,7	5,4	26,9	2,4	2,1	98	110	55

Moteurs triphasés M

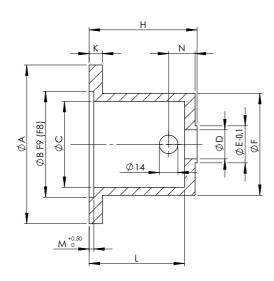
Dimensions

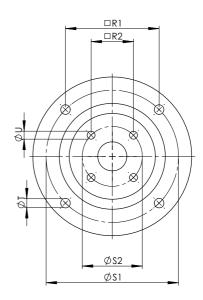
Les valeurs entre parenthèses se réfèrent à des moteurs avec frein.

Forme avec flasque

Taille							Dimens	ions [mm]						
	a ₁	b ₁	C ₁	d	d ₁	e ₁	f ₁	g	g ₁	i ₂	k	k _o	1	I ₁₁
DFT71K4	120	80	8	14	11	100	3	145	122(127)	24	232 (296)	208 (296)	30	4
DFT71C4	120	80	8	14	11	100	3	145	122(127)	24	232 (296)	208 (272)	30	4
DFT71D4	120	80	8	14	11	100	3	145	122(127)	24	232 (296)	208 (272)	30	4
DFT80K4	120	80	8	19	14	100	3	145	122(127)	34	292 (356)	258 (322)	40	4
DFT80N4	120	80	8	19	14	100	3	145	122(127)	34	292 (356)	258 (322)	40	4
DFT90S4	160	110	10	24	19	130	3,5	197	154(161)	53,5	323 (408)	273 (358)	50	5
DFT90L4	160	110	10	24	19	130	3,5	197	154(161)	53,5	323 (408)	273 (358)	50	5
DFV100M4	200	130	10	28	19	165	3,5	197	166	60	371 (456)	311 (396)	60	5
DFV100L4	200	130	10	28	19	165	3,5	197	166	60	401 (486)	341 (426)	60	5
DFV112M4	200	130	11	28	24	165	3,5	221	179(182)	64	409 (489)	345 (425)	60	5

Taille							Dimens	ions [mm]						
	I ₁₂	l ₁	l ₂	I ₁₃	I ₁₄	s ₁	t	u	t ₁	u ₁	Х	x ₉	У	p ₂
DFT71K4	22	23	24	1	20	6,6	16	5	12,5	4	87 (127)	61 (86)	97	50
DFT71C4	22	23	24	1	20	6,6	16	5	12,5	4	87 (127)	61 (86)	97	50
DFT71D4	22	23	24	1	20	6,6	16	5	12,5	4	87 (127)	61 (86)	97	50
DFT80K4	32	30	31	4	22	6,6	21,5	6	16	5	87 (127)	61 (86)	97	50
DFT80N4	32	30	31	4	22	6,6	21,5	6	16	5	87 (127)	61 (86)	97	50
DFT90S4	40	40	42	4	32	9	27	8	21,5	6	87 (127)	76 (121)	97	50
DFT90L4	40	40	42	4	32	9	27	8	21,5	6	87 (127)	76 (121)	97	50
DFV100M4	50	40	42	4	32	11	31	8	21,5	6	106 (139)	74 (125)	109	56
DFV100L4	50	40	42	4	32	11	31	8	21,5	6	106 (139)	74 (125)	109	56
DFV112M4	50	50	55	5	40	11	31	8	27	8	106 (139)	91 (131)	109	56


Forme avec pied


Taille					Di	mensions [mm]					
	a	b	С	е	f	h	m ₁	n	s	W ₁	w ₂
DT71K4	90	112	5	115	144	71	32	31	7	45	75
DT71C4	90	112	5	115	144	71	32	31	7	45	75
DT71D4	90	112	5	115	144	71	32	31	7	45	75
DT80K4	100	125	10	125	149	80	28	33	9	50	90
DT80N4	100	125	10	125	149	80	28	33	9	50	90
DT90S4	125	140	8	152	176	90	32	32	9	56	106
DT90L4	125	140	8	152	176	90	32	32	9	56	106
DV100M4	140	160	12	170	188	100	35	38	12	63	123
DV100L4	140	160	12	170	188	100	35	38	12	63	123
DV112M4	140	190	14	170	220	112	35	44	12	70	130

Brides moteur MG

Les brides moteur servent à la fixation de moteurs sur les vérins à vis et en même temps comme boîtier pour l'accouplement entre le moteur et l'arbre d'entraînement.

Veuillez indiquer lors de la commande le côté de montage de la bride moteur (A ou B).

Taille	Moteur	Modèle					Dimensi	ons [mm]				
		MG/ZF ¹⁾	А	В	С	D	Е	ØF	□F	Н	1	K
MG M 0	DFT63	MG	90	60	44	19	22	50		62	61	10
MG M 1	DFT71	MG	120	80	65	22	32	77		81,5	80	10
MG M 1	DFT80	MG	120	80	56	22	32	62		91,5	90	10
MG M 2	DFT71	MG	120	80	65	26	35	77		81,5	80	10
MG M 2	DFT80	MG	120	80	78	26	35	88		92,5	91	10
MG M 2	DFT90	MG	160	110	90	31	35	110		109,5	108	15
MG M 3	DFT71	MG	120	80	77	28	40	87		91,5	90	10
MG M 3	DFT80	MG	120	80	78	28	40	88		103	101	10
MG M 3	DFT90	MG	160	110	95	28	40	104		125	123	12
MG M 3	DFV100/112	MG + ZF	200	130	100	24	40	145		133	131	29
MG M 4	DFT80	MG	120	80	75	42	52	-	88	105	103	12
MG M 4	DFT90	MG	160	110	98	42	52	114		118	116	15
MG M 4	DFV100/112	MG + ZF	200	130	120	30	52	145		134	131	29
MG M 5	DFT90	MG	160	110	105	45	62	120		138,5	136	15
MG M 5	DFV100/112	MG	200	130	125	35	62	145		154	152	16

¹⁾ MG = Bride moteur ZF = Flasque intermédiaire

Brides moteur MG

			Accouple-	Demi-bloc	Demi-bloc						
L	M	N	□ R ₁	□ R ₂	S ₁	S ₂	Т	U	ment Taille	d'accouplement ¹⁾ M	d'accouplement ¹⁾ Moteur
53	3	20	53	24	75	33,9	6	5,5	RA14	RA14 Ø9	RA14 Ø11
72	3,5	20	70,7	32	100	45,3	6,6	5,5	RA19	RA19 Ø10	RA19 Ø14
85	3,5	20	70,7	32	100	45,3	6,6	5,5	RA19	RA19 Ø10	RA19 Ø19
73	3,5	22	70,7	35	100	49,5	6,6	6,6	RA19	RA19 Ø14	RA19 Ø14
84	3,5	22	70,7	35	100	49,5	6,6	6,6	RA19	RA19 Ø14	RA19 Ø19
100	4	27	92	35	130	49,5	9	6,6	RA24	RA24 Ø14	RA24 Ø24
83	3,5	27	70,7	44	100	62,2	6,6	9	RA19	RA19 Ø16	RA19 Ø14
93	3,5	32	70,7	44	100	62,2	6,6	9	RA19	RA19 Ø16	RA19 Ø19
114	4	30	92	44	130	62,2	9	9	RA24	RA24 Ø16	RA24 Ø24
119	4,5	40	116,7	44	165	62,2	M10	9	RA28	RA28 Ø16	RA28 Ø28
94	3,5	35	70,7	55	100	78	6,6	11	RA24	RA24 Ø20	RA24 Ø19
106	4	30	92	55	130	78	M8	11	RA24	RA24 Ø20	RA24 Ø24
119	4,5	38	116,7	55	165	99	M10	11	RA28	RA28 Ø20	RA28 Ø28
122	4	48	92	70	130	99	M8	13,5	RA28	RA28 Ø25	RA28 Ø24
138	7	50	116,7	70	165	85	M10	13,5	RA28	RA28 Ø25	RA28 Ø28

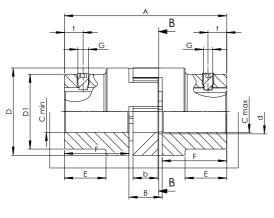
¹⁾ Lors de la commande, le diamètre du perçage côté moteur du demi-bloc d'accouplement doit être explicitement spécifié.

Accouplements

Accouplements d'arbres GS L'accouplement d'arbres GS est un accouplement d'arbres avec

L'accouplement d'arbres GS est un accouplement d'arbres avec particulièrement peu de jeux. La couronne dentée est montée sous précontrainte, ce qui conduit à une pression d'engrènement faible et ainsi une rigidité accrue du système.

Pour des hauts régimes et des fortes accélérations, cet accouplement d'arbres a fait ses preuves par sa fonction impeccable et sa durabilité. Nous recommandons cet accouplement d'arbres avec moyeux à pince ou à collier tendeur.

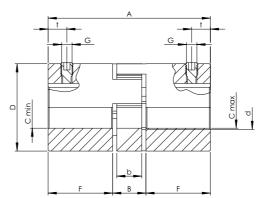

Taille	D ₁	D_2	D_3	D_4	А	F	t	b	В	B ₁	G
	H ⁷	H ⁷									
WK-GS-9	6-9	6-9	20	23,5	30	10	5	8	10	7,5	M2
WK-GS-14	6-14	6-14	30	32,5	35	11	5	10	13	11,5	M3
WK-GS-19	10-20	10-20	40	46	66	25	12	12	16	14,5	M6
WK-GS-24	10-28	10-28	55	57	78	30	14	14	18	14,5	M6
WK-GS-28	19-38	19-39	65	72,6	90	35	15	15	20	20	M8

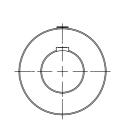
Accouplements

Modèle 1 Accouplements d'arbres RA, RG Les accouplements d'arbres AR et RG sont particulièrement élastiques

Les accouplements d'arbres AR et RG sont particulièrement élastiques à la rotation. Ils compenses des petits décalages radiaux, axiaux et angulaires des arbres.

Ils ménagent les vérins à vis, engrenages à roues coniques et les moteurs par leur effet d'atténuation de coups et de vibrations.



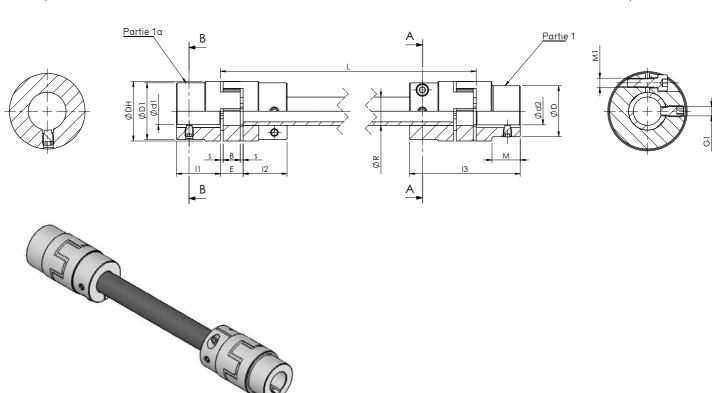


Modèle 1 a

Taille	Mo-	Max.		Dimensions [mm]											Vis d	'arrêt	Poids		
	dèle	M _d		ı							ı	ı	Déplace- ment axial max	Alignement radial max. n=1500 tr/min.	Alignemen ma pour n=15	ax.	Côte	Côte	
		[Nm]	A ₁	E	F	В	b	D₁	D	d	C _{min} ¹⁾	C _{max} ¹⁾	Δ Ka [mm]	Δ Kr [mm]	∆ Kw [dégrée]	Δ Kw [mm]	G	t	[kg]
RA 14	1a	7,5	35	-	11	13	10	_	30	10	6	15	1,0	0,17	1,2	0,67	M4	5	0,05
RA 19	1	10	66	20	25	16	12	32	40	18	10	19	1,2	0,20	1,2	0,82	M5	10	0,15
RA 19	1a	10	66	_	25	16	12	_	41	18	19	24	1,2	0,20	1,2	0,82	M5	10	0,15
RA 24	1	35	78	24	30	18	14	40	55	27	14	24	1,4	0,22	0,9	0,85	M5	10	0,25
RA 24	1a	35	78	_	30	18	14	-	56	27	22	28	1,4	0,22	0,9	0,85	M5	10	0,35
RA 28	1	95	90	28	35	20	15	48	65	30	14	28	1,5	0,25	0,9	1,05	M6	15	0,40
RA 28	1a	95	90	_	35	20	15	-	67	30	28	38	1,5	0,25	0,9	1,05	M6	15	0,55
RG 38	1	190	114	37	45	24	18	66	80	38	16	38	1,8	0,28	1,0	1,35	M8	15	0,85
RG 42	1	265	126	40	50	26	20	75	95	46	28	42	2,0	0,32	1,0	1,70	M8	20	1,2
RG 48	1	310	140	45	56	28	21	85	105	51	28	48	2,1	0,36	1,1	2,00	M8	20	1,7
RG 55	1	410	160	52	65	30	22	98	120	60	30	55	2,2	0,38	1,1	2,30	M10	20	7,3
RG 65	1	625	185	61	75	35	26	115	135	68	40	65	2,6	0,42	1,2	2,70	M10	20	11,0
RG 75	1	975	210	69	85	40	30	135	160	80	40	75	3,0	0,48	1,2	3,30	M10	25	17,9
RG 90	1	2400	245	81	100	45	34	160	200	100	50	90	3,4	0,50	1,2	4,30	M12	30	28,5

¹⁾ Toutes les tailles intermédiaires ne sont incluses dans ce catalogue. D'autres tailles sont disponibles sur demande.

Alignement

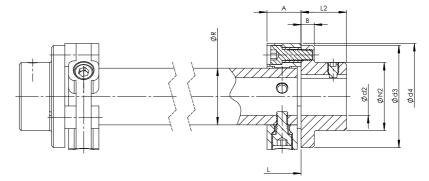

Pour les moyeux standard et les grand moyeux RA 14-48, le trou taraudé G pour les vis d'arrêt se trouve en face de la rainure. Vis d'arrêt selon DIN 916 avec bout en cuvette dentée.

Arbres à articulation ZR

L'arbre à articulation ZR est particulièrement élastique à la rotation et sert au franchissement de grandes distances d'arbres pour des vitesses de rotation jusqu'à 1500 tr/min. La disposition double des couronnes dentées permet des décalages radiaux importants et assure des bonnes propriétés d'atténuation.

L'arbre à articulation ZR peut être installé radialement sans déplacer l'engrenage ou le moteur.

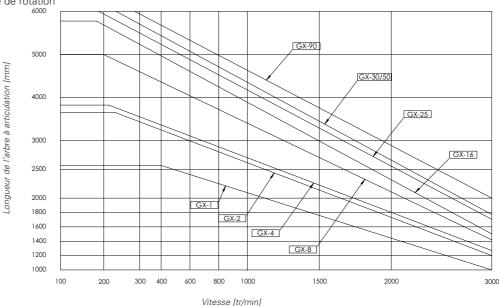
Coupe B-B Coupe A-A


Taille	/	Alésages fi	nis ØdH7 ²	2)													
	Pai	rt 1	Par	t 1a					I1								
	min Ød2	max Ød2	min Ød1	max Ød1	Ø DH	ØD	Ø D1	ØdH	12	М	S	b	Е	13	ØR	G1	dp
ZR 14	-	-	4	14	30	-	30	10,5	11	-	1,5	10	13	35	14x2	M4	2,5
ZR 19	6	19	19	24	40	32	41	18	25	20	2	12	16	66	20x3	M6	4
ZR 24	8	24	24	28	55	40	55	27	30	24	2	14	18	78	30x4	M8	5,5
ZR 28	10	28	28	38	65	48	65	30	35	28	2,5	15	20	90	35x4	M10	7
ZR 38	12	38	38	45	80	66	77	38	45	37	3	18	24	114	40x4	M12	8,5
ZR 42	28	42	42	55	95	75	94	46	50	40	3	20	26	126	45x4	M12	8,5
ZR 48	28	48	48	60	105	85	102	51	56	45	3,5	21	28	140	50x4	M16	12

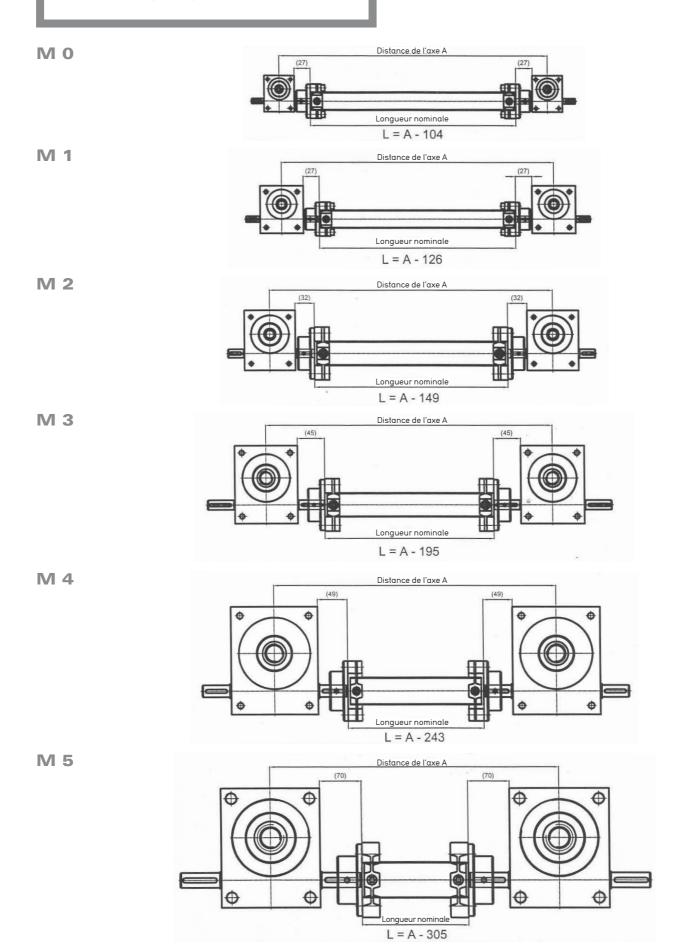
Arbres à articulation GX

Des arbres à articulation rigides à la torsion servent à connecter plusieurs vérins à vis. Ils atténuent des bruits, des vibrations de torsion et des coups et compensent des décalages axiaux, radiaux et angulaires. Ils se distinguent en outre par leur rigidité à la torsion, leur résistance aux températures et l'huile et sont particulièrement adaptés pour des longues distances et/ou des hautes vitesses de rotation. Des arbres à articulation élastiques ne nécessitent pas de maintenance, la partie au milieu peut être installée radialement (transversal) sans démonter les accouplements raccordés.

La longueur est déterminée selon les besoins du client avec des accouplements fixés des deux côtés. A l'exception des liaisons très longues, des paliers à semelles ne sont généralement pas nécessaires. Pour un alignement optimal des vis des vérins à vis, nous recommandons l'utilisation d'arbres à articulations avec moyeux de serrage.

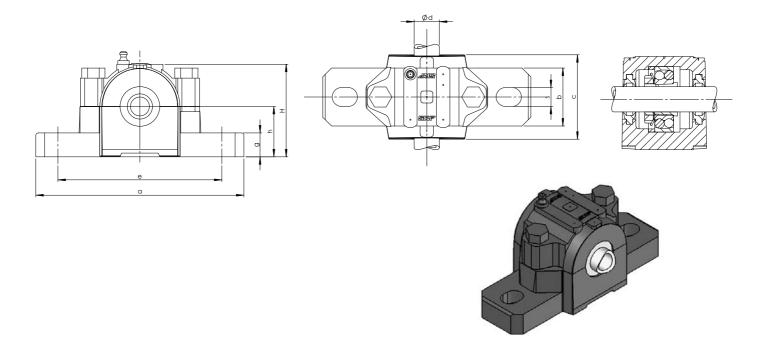


Taille					Avant-trou	Alésages finis ØdH7 2)							
	А	В	С	Ø d ₃	d	D max (2)	Е	F	L ₂	Ø N ₂	ØR	Т	T _K / M
GX - 1	24	7	5	56	8	25	22	2	24	36	30	1,5	Ø44/2xM6
GX - 2	24	8	5	85	12	38	20	4	28	55	40	1,5	Ø68/2xM8
GX - 4	28	8	5	100	15	45	24	4	30	65	45	1,5	Ø80/3xM8
GX - 8	32	10	5	120	18	55	28	4	42	80	60	1,5	Ø100/3xM10
GX - 16	42	12	5	150	20	70	36	6	50	100	70	1,5	Ø125/3xM12
GX - 25	46	14	5	170	20	85	40	6	55	115	85	1,5	Ø140/3xM14
GX - 30	58	16	5	200	25	100	50	8	66	140	100	1,5	Ø165/3xM16
GX - 50	58	16	5	200	25	100	50	8	66	140	100	1,5	Ø165/3xM16
GX - 90	70	19	5	260	30	110	62	8	80	160	125	2	Ø215/3xM20

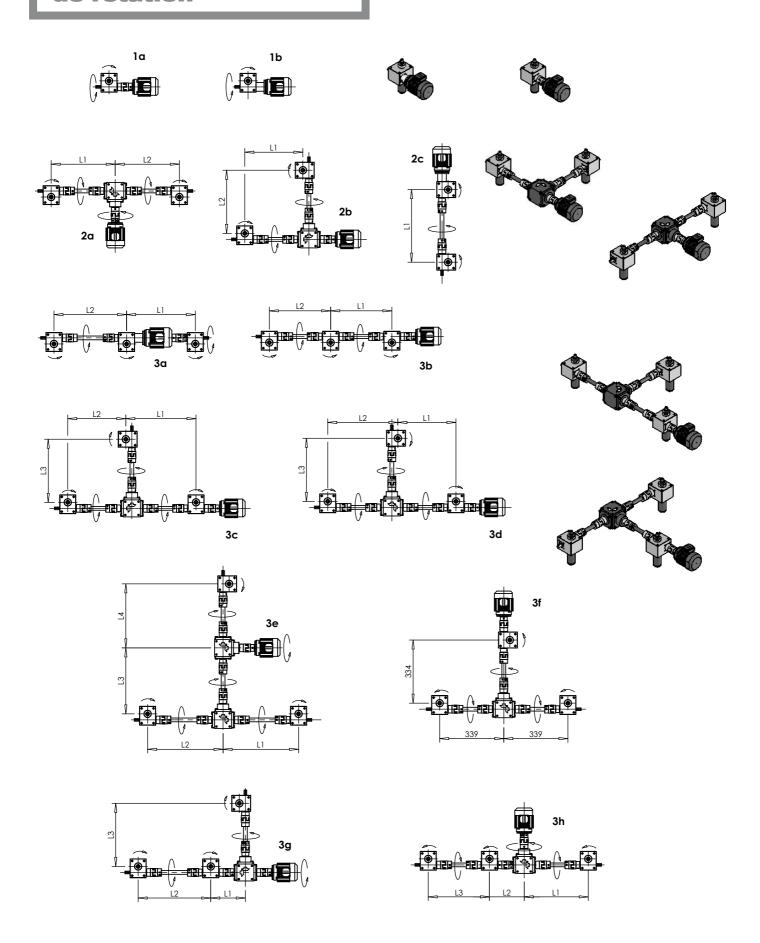

Diagramme des arbres à articulation

en fonction de la longueur et de la vitesse de rotation $_{6000}^{\rm coo}$

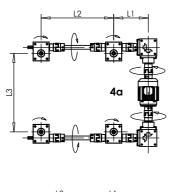
Arbres à articulation GX

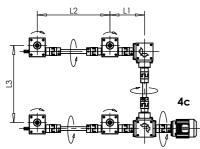

Calcul de la longueur des arbres à articulation pour plusieurs rainures

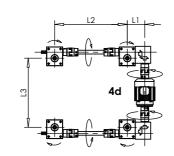
Paliers à semelle SN

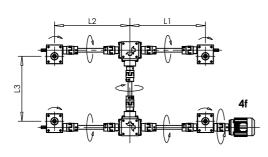

Les paliers à semelle selon DIN 736 sont équipés d'un roulement à rouleaux, d'une douille de serrage et d'un boîtier avec des joints de feutre des deux côtés. Ces paliers à semelle conviennent parfaitement pour le support des arbres à articulation GX et ZR de grande longueur. La douille de serrage peut être fixée sur le diamètre extérieur du tube.

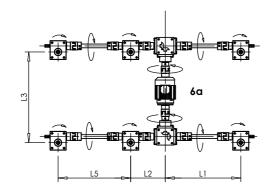
Sauf indication contraire, les palies à semelle sont livrés comme paliers libres

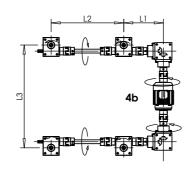


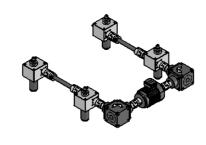

Taille	Ød	Н	h	е	S	С	а	b	g (max)	Poids kg
SN 505-20	20	75	40	130	15	67	165	46	19	1,4
SN 506-25	25	90	50	150	15	77	185	52	22	1,98
SN 507-30	30	110	50	150	15	82	185	52	22	2,1
SN 508-35	35	110	60	170	15	85	205	60	25	3,1
SN 509-40	40	115	60	170	15	85	205	60	25	2,9
SN 510-50	50	130	60	170	15	90	205	60	25	3,3
SN 511-55	55	135	70	210	18	95	255	70	28	4,6
SN 512-60	60	150	70	210	18	105	255	70	30	5,4
SN 513-65	65	155	80	230	18	110	275	80	30	6,7
SN 515-70	70	175	80	230	18	115	280	80	30	7,3
SN 516-75	75	185	95	260	22	120	315	90	32	9,3
SN 517-80	80	195	95	260	22	125	320	90	32	9,8
SN 518-90	90	215	100	290	22	145	345	100	35	12,5
SN 520-100	100	240	112	320	26	160	380	110	40	15,5
SN 522-110	110	270	125	350	26	175	410	120	45	19,8

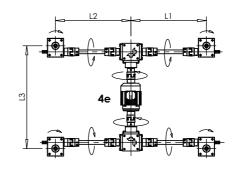

Exemples pour dispositions et sens de rotation

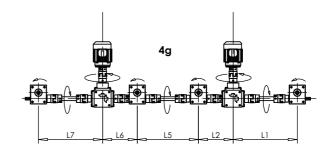


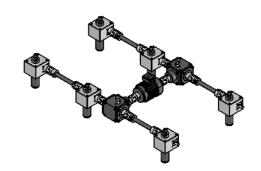

Exemples pour dispositions et sens de rotation

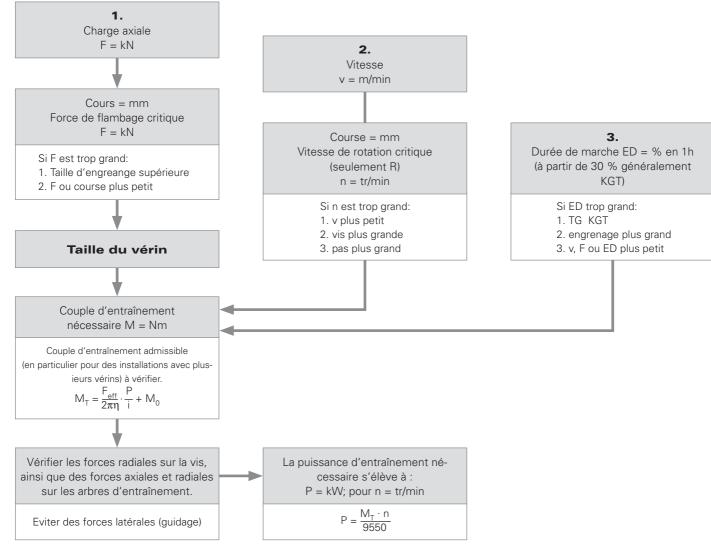












Choix d'un vérin à vis et de l'entraînement associé

Après le choix de l'entraînement, il faut vérifier si le vérin à vis ou des éléments de transmission peuvent être surchargés par l'accouplement d'entraînement.

Il faut en outre clarifier :

- 1. le côté de montage du moteur.
- 2. le sens de rotation des installations de levage.

Forces et couples sur le vérin

à vis

Nota Les forces et couples ne peuvent être estimés qu'en simplifiant les hypothèses ; les paramètres de friction des matériaux glissants et, par conséquent, leur échauffement et leur durée de vie sont des fonctions de charge, vitesse, température et conditions de lubrification les vitesses de rotation critiques et les longueurs de flambage dépendent de la rigidité et de la masse des fixations et des bâtis de machine etc.

$$F_{eff} = \frac{M_T - M_0}{\frac{P}{i}} \cdot 2 \cdot \pi \cdot \eta$$

 $F_{\rm eff}$ = Force axiale sur la vis

 $F_{S}^{^{1}}$ = Force efficace de toutes les forces radiales agissant sur la vis

M = Couple de la vis ou de l'écrou (supprimé pour le modèle V)

V_H = Vitesse de levage

 F_{ax} = Force axiale sur l'arbre d'entraînement

 F_r = Force radiale sur l'arbre d'entraînement

 M_T = Couple d'entraı̂nement

 n_{T}^{-} = Vitesse de rotation de l'entraînement

P = Pas de la vis

i = Rapport

 η = Rendement

 M_0 = Couple à vide (S. 28 (Nm))

Capacité de charge des vis trapézoïdales

La capacité de charge des éléments glissants dépend généralement des matériaux, des états de surface, du rodage, de la pression spécifique, des conditions de lubrification, de la vitesse de glissement, de la température, du facteur de service et de la dissipation thermique.

La pression spécifique admissible dépend avant tout de la vitesse de glissement de la vis.

Dans le cas d'un entraînement de déplacement, la pression spécifique ne doit pas dépasser 5 N/mm2.

La vitesse de glissement admissible peut aisément être calculée à l'aide des valeurs pv indiquées en fonction des matériaux des écrous et des surfaces de l'écrou.

Valeur pv Matière	Valeur pv[N/mm² ·m/min]
G-CuSn 7 ZnPb (Rg 7)	300
G-CuSn 12 (G Bz 12)	400
Kunstoff (PETP)	100
Grauguss GG 22/GG 25	200
	•

Surface portante nécessaire

(VIII)
$$A_{erf} = \frac{F_{ax}}{P_{xx}}$$

Vitesse de glissement maximale admissiblet

(IX)
$$v_{Gzul} = \frac{pv\text{-Wert}}{P_{zul}}$$

Vitesse de rotation maximale admissible

(X)
$$n_{zul} = \frac{v_{Gzul} \cdot 1000}{D \cdot \pi}$$

Vitesse d'avance admissible

(XI)
$$s_{zul} = \frac{n_{zul} \cdot P}{1000}$$

Calcul d'exemple de charge limite

Données: Vérin à vis

vis trapézoïdale avec,écrou en bronze $P_{zul} = 5 \text{ N/mm}^2$, charge axiale $F_{ax} = 10\,000 \text{ N}$

Surface portante nécessaire
$$A_{erf}$$
 de (VIII)
$$A_{erf} = \frac{F_{ax}}{P_{zul}} = \frac{10000 \text{ N}}{5 \text{ N/mm}^2} = 2000 \text{ mm}^2$$

Choix de l'écrou en bronze à partir des données techniques

 36×6 avec une surface portante A = 2 140 mm²

Vitesse de glissement maximale admissible $V_{\rm Gzul}$

de (IX)
$$v_{Gzul} = \frac{pv\text{-Wert}}{P_{zul}} = \frac{300 \text{ N/mm}^2 \cdot \text{m/min}}{5 \text{ N/mm}^2} = 60 \text{ m/min}$$

Vitesse de rotation maximale admissible

de (X)
$$n_{zul} = \frac{v_{Gzul} \cdot 1000}{D \cdot \pi} = \frac{60 \text{ m/min} \cdot 1000 \text{ mm/m}}{33 \text{ mm} \cdot \pi} = 579 \text{ 1/min}$$

Vitesse d'avance admissible

de (XI)
$$s_{zul} = \frac{n_{zul} \cdot P}{1000} = \frac{579 \text{ 1/min} \cdot 6 \text{ mm}}{1000 \text{ mm/m}} = 3,474 \text{ m/min}$$

Résultat: Pour une charge de 10 000 N, l'entrainement par vis trapézoïdale peut se déplacer á une vitesse de 3,474 m/mn Surface portante nécessaire [mm²]

Force axiale appliquée [N]

Pression spécifique maximale admissible = 5 N/mm²

Valeur pv Voir tableau

Vitesse de glissement maximale admissible [m/min]

D Diamètre du flanc [mm]

Vitesse de rotation maximale admissible[tr/min]

Ρ Pas de la vis [mm]

Vitesse d'avance admissible [m/min]

Question: Vitesse de déplacement admissible avec cette charge?

$$\begin{array}{ll} {\sf Pas\;P} & = 6\;{\sf mm} \\ {\it \varnothing\;flanc\;D} & = d - \frac{{\sf P}}{2} \\ & = 36 - \frac{6}{2}\;[{\sf mm}] \\ & = 33\;{\sf mm} \end{array}$$

Avec valeur pv pour Rg 7 = 300 m/min

Vitesse critique des vis trapézoïdales

Des vis longues tournant à vitesse élevée sont exposée au risque de vibrations de résonance. Le procédé décrit ci après permet d'estimer la fréquence de résonance sous réserve d'un montage suffisamment rigide. Les vitesses de rotation proches de la vitesse critique augmentent considérablement le risque de flambage. La vitesse de rotation critique intervient donc dans le calcul de la longueur de flambage critique.

Vitesse de rotation maxi admissible de la vis

(XII)
$$n_{zul} = 0.8 \cdot n_{kr} \cdot f_{kr}$$

Force axiale maximale admissible

(XIII)
$$F_{zul} = 0.8 \cdot F_k \cdot f_k$$

n_{zul} Vitesse de rotation maxi admissible de la vis[tr/min]

n_{kr} Vitesse de rotation critique théorique de la vis [tr/min], pouvant provoquer une vibration de résonance

 f_{kr} facteur de correction tenant compte de la nature des paliers

de la vis

Attention!

La vitesse de fonctionnement ne doit pas excéder 80 % de la vitesse maximale.

Types de paliers

Valeurs typiques pour le facteur de correction $f_{\rm kr}$ correspondant aux cas classiques pour des paliers de vis standards.

Force de flambage critique des vis trapézoïdales

Les vis longues et minces sont exposées au risque de flambage latéral sous effort de compression.

Le procédé décrit ci après permet d'estimer la force axiale maximale admissible d'après Euler. Avant de définir la force axiale maximale admissible, les facteurs de sécurité de l'installation doivent être pris en compte.

Force axiale maximale admissible [kN]

Force axiale de flambage critique théorique [kN]

Facteur de correction tenant compte des paliers de la vis

Attention!

La force de fonctionnement ne doit pas excéder 80 % de la force maximale admissible.

Types de paliers

Valeurs typiques pour le facteur de correction f_k correspondant aux cas classiques pour des paliers de vis standards.

Fléchissement de la vis par son propre poids

Même pour des vis correctement installées, pour lesquelles des guidages externes assument des forces agissantes, le propre poids de la vis non-soutenue provoque un fléchissement. La formule ci-dessous permet de déterminer le fléchissement maximal de la vis.

Fléchissement maximal de la vis

(XIV)
$$f_{max} = f_B \cdot 0.061 \cdot \frac{w_{TGS} \cdot L_{TGS}}{I_{y}}$$

f_B Facteur de correction tenant compte des paliers de la vis

Module d'inertie [mm⁴]

 L_{TGS} Longueur libre, non-soutenue de la vis [mm]

w_{TGS} Charge linéaire [kg/m]

Types de paliers

Valeurs typiques pour le facteur de correction fB correspondant aux cas classiques pour des paliers de vis standards.

Calcul d'exemple pour vérin à vis trapézoïdale

Données: Vérin à vis trapézoïdale

vis trapézoïdale RPTS Tr 24x5 longueur L = 1500 mm Type de palier 2

Vitesse de service: $n_{max} = 500 [tr/min]$

Question Est-ce que la vitesse de service est critique? Quelle est la charge axiale admissible? Quel est le fléchissement maximal?

Vitesse de rotation maximale admissible n_{zul}

de (XII)

$$n_{zul} = 0.8 \cdot n_{kr} \cdot f_{kr} = 0.8 \cdot 830 \text{ 1/min} \cdot 1 = 664 \text{ 1/min}$$

de (XIII)

$$F_{711} = 0.8 \cdot F_k \cdot f_k = 0.8 \cdot 4.2 \text{ kN} \cdot 1 = 3.36 \text{ kN}$$

de (XIV)

$$f_{\text{max}} = f_{\text{B}} \cdot 0,061 \cdot \frac{w_{\text{TGS}} \cdot L_{\text{TGS}}}{l_{\text{Y}}} = 1 \cdot 0,061 \cdot \frac{2,85 \text{ kg/m} \cdot 1,5 \text{ m}}{0,460 \text{ cm}^4}$$

$$f_{max} = 0.57 \text{ mm}$$

Vitesse de rotation critique théorique de la vis $n_{\nu r} = 830 \text{ 1/min}$

Force axiale de flambage critique théorique $F_k = 4.2 \text{ kN}$

Charge linéaire $W_{TGS} = 2,85 \text{ kg/m}$ Module d'inertie $I_v = 0,460 \text{ cm}^4$

Résultat: Le vérin à vis sélectionné n'est pas critique pour n_{max} = 500 tr/min II peut être chargé avec force axiale de 3,36 kN et subit lors d'un montage horizontal un fléchissement maximal de 0,57 mm.

(Respecter la pression spécifique et la valeur pv!)

Couple et puissance d'entraînement nécessaires

Le couple d'entraînement d'un ensemble vis/écrou résulte de la charge axiale, du pas, du rendement de l'ensemble vis/écrou et de ses paliers. Dans le cas de temps de démarrage courts et de vitesses élevées il faut tenir compte du couple d'accélération.

Il faut également tenir compte du couple dû à l'adhérence au démarrage.

Couple d'entraînement nécessaire

(XV)

$$M_d = \frac{F_{ax} \cdot P}{2000 \cdot \pi \cdot \eta_A} \ = + \ M_{rot}$$

Rendement pour des coefficients de frottement autres que $\mu = 0,1$

(XVI)

$$\eta = \frac{\tan \alpha}{\tan (\alpha + \rho')}$$

charge axiale totale [N] pas de la vis [mm]

rendement du système d'entraînement complet

= $\eta_{TGT} \cdot \eta_{palier \ fixe} \cdot \eta_{palier \ libre}$

 $\begin{array}{l} \eta_{TGT\;(\mu=\,0,1)} \\ \eta_{palier\;fixe} = 0.9\;\dots\;0.95 \end{array}$

 $\eta_{\text{palier libre}} = 0.95$ couple d'entraînement nécessaire [Nm] $\rm M_{\rm d}$ moment d'accélération angulaire [Nm]

 $= J_{rot} \cdot \alpha_0$ = 7,7 \cdot d⁴ \cdot L \cdot 10⁻¹³

 J_{rot} moment d'inertie angulaire [kgm²]

ď ø nominal de la vis [mm] L longueur de la vis [mm] accélération angulaire [1/s²] α_{0}

rendement (etc.) pour la conversion d'un mouvement rotatif en un mouvement linéaire

angle d'hélice du filetage [°]: α

 $\tan \alpha = \frac{P}{d_2 \cdot \pi}$

pas de la vis [mm] avec

ø sur flanc [mm]

angle de frottement du filet [°] ρ΄

 $\tan \rho' = \mu \cdot 1,07$ pour filet trapézoïdal ISO

coefficient de frottement μ

	μ au démar	rage (= μ ₀)	μ en mo	uvement
	à sec	lubrifié	à sec	lubrifié
Écrous en métal	≈ 0,3	≈ 0,1	≈ 0,1	≈ 0,04
Écrous en plastique	≈ 0,1	≈ 0,04	≈ 0,1	≈ 0,03

Puissance d'entraînement nécessaire

(XVII)

$$P_a = \frac{M_d \cdot n}{9550}$$

 M_{d} couple d'entraînement nécessaire[Nm]

vitesse de rotation [tr/min]

P_a Puissance d'entraînement nécessaire [kW]

Couple de réversion dû à une charge axiale

Les vis trapézoïdales dont l'angle d'hélice α est supérieur à l'angle de friction ρ , sont considérées comme étant réversibles. Ceci veut dire qu'une charge axiale appliquée sur la vis produit un couple sur la vis. Le rendement η de la conversion d'un mouvement linéaire en un mouvement rotatif est inférieur à celui de la conversion d'un mouvement rotatif en mouvement linéaire.

Moment de blocage nécessaire

(XVIII)

$$M_{d}' = \frac{F_{ax} \cdot P \cdot \eta'}{2000 \cdot \pi} + M_{rot}$$

Durée de vie L

La durée de vie (nominale) d'un entraînement par vis à billes est calculée de façon analogue à celle d'un roulement à billes.

Vitesse de rotation moyenne

(1)

$$n_{m} = \frac{n_{1} \cdot q_{1} + n_{2} \cdot q_{2} + ... + n_{i} \cdot q_{i}}{100}$$

Chargement dynamique axial équivalent

(II)

$$F_m = \sqrt[3]{F_1^3 \cdot \frac{n_1 \cdot q_1}{n_m \cdot 100} + F_2^3 \cdot \frac{n_2 \cdot q_2}{n_m \cdot 100} + ... + F_i^3 \cdot \frac{n_i \cdot q_i}{n_m \cdot 100}}$$

Durée de vie d'une vis à billes

(III)
$$L_{10} = \left(\frac{C}{F_{m}}\right)^{3} \cdot 10^{6}$$

F_{ax} charge axiale totale [N]
P pas de la vis [mm]

η' rendement pour la conversion d'un mouvement linéaire en un mouvement rotatif

 $= \frac{\tan (\alpha - \rho')}{\tan \alpha}$ $= 0.7 \cdot \eta$

L'influence du rendement des paliers peut être négligée.

 $\begin{array}{ll} {\rm M_d}' & \quad {\rm Moment~de~blocage~n\acute{e}cessaire~[Nm]} \\ {\rm M_{rot}} & \quad {\rm moment~d'acc\acute{e}l\acute{e}ration~angulaire~[Nm]} \end{array}$

 $= J_{rot} \cdot \alpha_0$ = 7,7 \cdot d⁴ \cdot L \cdot 10⁻¹³

 $\begin{array}{ll} J_{rot} & \text{moment d'inertie angulaire [kgm^2]} \\ d & \text{ø nominal de la vis [mm]} \\ L & \text{longueur de la vis [mm]} \\ \alpha_n & \text{accélération angulaire [1/s^2]} \end{array}$

Attention!

Il faut prendre en considération que des vibrations ou des coups ont une influence néfaste sur la durée de vie d'en entraînement à billes.

 n_1 , n_2 , ... vitesses de rotation en [tr/min] pendant les intervalles q_1 , q_2 , ...

n_m vitesse moyenne en [tr/min]

q₁, q₂, ... durée de charge dans la direction de charge en [%]

 $\mathsf{F_1},\,\mathsf{F_2},\,\dots$ Charges axiales en [N] dans une direction de charge pendant les $\mathsf{q_1},\,\mathsf{q_2},\,\dots$

F_m Chargement dynamique axial équivalent
Comme une vis à bille peut être chargée dans deux directions, Fm doit d'abord être déterminé pour chacune des deux directions de chargement. La valeur la plus grande entre dans le calcul de L. Généralement, il est utile d'établir d'abord un schéma. Il faut alors prendre en compte qu'une précharge est une charge permanente.

C Charge dynamique de base charge axiale d'intensité et de sens constants en [N] avec laquelle un nombre suffisamment grand de vis à billes identiques atteint une durée de vie de un million de tours.

L₁₀ Durée de vie d'une vis à billes. Elle est exprimée en nombre de tours atteints ou dépassés par 90% d'un nombre suffisamment grand de vis à billes apparemment identiques fonctionnant dans les mêmes conditions avant l'apparition des premiers signes de fatigue des matériaux.

Calcul d'exemple

Durée de vie d'une vis à billes

F₁ = 30000 N à n₁ = 150 tr/min pour q₁ = 21 % de la durée de fnct. F₂ = 18000 N à n₂ = 1000 tr/min pour q₂ = 13 % de la durée de fnct. F₃ = 42000 N à n₃ = 75 tr/min pour q₃ = 52 % de la durée de fnct. F₄ = 1800 N à n₄ = 2500 tr/min pour q₄ = 14 % de la durée de fnct.

$$\overline{\Sigma} = 100 \%$$

Vis à billes KGT 5010

Question:

Durée de vie maximale, pour des conditions d'enclenchements données

Vitesse de rotation moyenne n_m

de (I)

$$n_{m} = \frac{n_{1} \cdot q_{1} + n_{2} \cdot q_{2} + n_{3} \cdot q_{3} + n_{4} \cdot q_{4}}{100}$$

$$n_{m} = \frac{150 \cdot 21 + 1000 \cdot 13 + 75 \cdot 52 + 2500 \cdot 14}{100} \text{ 1/min}$$

$$-$$
 n_m = 550,5 1/min

Chargement dynamique axial équivalent F_m

$$F_{m} = \sqrt[3]{F_{1}^{3} \cdot \frac{n_{1} \cdot q_{1}}{n_{m} \cdot 100} + F_{2}^{3} \cdot \frac{n_{2} \cdot q_{2}}{n_{m} \cdot 100} + F_{3}^{3} \cdot \frac{n_{3} \cdot q_{3}}{n_{m} \cdot 100} + F_{4}^{3} \cdot \frac{n_{4} \cdot q_{4}}{n_{m} \cdot 100}}$$

$$F_{m} = \sqrt[3]{30000^{3} \cdot \frac{150 \cdot 21}{550, 5 \cdot 100} + 18000^{3} \cdot \frac{1000 \cdot 13}{550, 5 \cdot 100} + 42000^{3} \cdot \frac{75 \cdot 52}{550, 5 \cdot 100} + 1800^{3} \cdot \frac{2500 \cdot 14}{550, 5 \cdot 100}}$$
 N

$$F_{\rm m} = 18943 \text{ N}$$

Durée de vie de la vis à billes L₁₀

de (III)

$$L_{10} = \left(\frac{C}{F_{\rm m}}\right)^3 \cdot 10^6$$

Charge dynamique C = 68700 N

$$L_{10} = \left(\frac{68700}{18943}\right)^3 \cdot 10^6$$

Nombre de tours L₁₀

$$L_{10} = 47.7 \cdot 10^6$$

$$L_{h} = \frac{L_{10}}{n_{m} \cdot 60} = \frac{47,7 \cdot 10^{6}}{550,5 \cdot 60} = 1444 \text{ h}$$

Durée de vie en heures L

Résultat : Pour les charges données, la vis choisie a une durée de vie totale de 47,7 . 106 tours, ce qui correspond à une durée de 1444 h.

Durée de vie d'une vis à billes avec ècrous préchargés

La force de précontrainte de l'écrou agit comme une charge permanente sur la vis à billes.

Calcul de la force moyenne \mathbf{F}_{m}

Analogue à l'écrou simple

Durée de vie

(IV)

$$L = \left(F_{m1}^{\frac{10}{3}} + F_{m2}^{\frac{10}{3}}\right)^{-0.9} \cdot C^{3} \cdot 10^{6}$$

Les méthodes de calcul supposent des conditions de lubrification parfaites. La durée de vie peut être écourtée en cas d'encrassement et/ou de manque de lubrifiant. Il faut également prévoir une durée de vie plus courte dans le cas de courses très faibles. Veuillez consulter dans ces cas nos chargés de produit.

Attention!

Les écrous à billes ne peuvent pas supporter de charges radiales ni de moments de basculement!

 $\mathbf{F}_{\mathrm{m1}},\,\mathbf{F}_{\mathrm{m2}},\,\dots$ charge des écrous 1 ou 2 dans le sens correspondant de la charge[N].

charge axial dynamique de base charge axiale d'intensité et de sens constants en [N] avec laquelle un nombre suffisamment grand de vis à billes identiques atteint une durée de vie de un million de tours.

Vitesse de rotation critique des vis à billes

Des vis longues tournant à vitesse élevées sont exposées au risque de vibration de résonance. Le procédé décrit ci après permet d'estimer la fréquence de résonance sous réserve d'un montage suffisamment rigide. Les vitesses de rotation proches de la vitesse critique augmentent considérablement le risque de flambage. La vitesse de rotation critique intervient donc dans le calcul de la longueur de flambage critique.

Vitesse de rotation maxi admissible

(V)
$$n_{rul} = 0.8 \cdot n_{kr} \cdot f_{kr}$$

vitesse de rotation critique théorique de la vis [tr/min] n_{zul} n_{kr} vitesse de rotation critique théorique de la vis [tr/min], qui peut provoquer une résonance \boldsymbol{f}_{kr}

facteur de correction tenant compte de la nature des paliers de la vis

La vitesse de fonctionnement ne doit pas excéder 80 % de la vitesse maximale.

Types de paliers

Valeurs typiques pour le facteur de correction f_{kr} correspondant aux cas classiques pour des paliers de vis standards.

Force de flambage critique des vis à billes

Les vis longues et minces sont exposées au risque de flambage latéral sous effort de compression. Le procédé décrit ci après permet d'estimer la force axiale maximale admissible d'après Euler. Avant de définir la force axiale maximale admissible, les facteurs de sécurité de l'installation doivent être prises en compte.

Force axiale maximale admissible

(VI)
$$F_{zul} = 0.8 \cdot F_k \cdot f_k$$

Fléchissement de la vis par son propre poids

Même pour des vis correctement installées, pour lesquelles des guidages externes assument des forces agissantes, le propre poids de la vis non-soutenue provoque un fléchissement. La formule ci-dessous permet de déterminer le fléchissement maximal de la vis.

Fléchissement maximal de la vis

(VII)
$$f_{max} = f_B \cdot 0.061 \cdot \frac{w_{KGS} \cdot L_{KGS}}{I_v}$$

force axiale maximale admissible [kN]

force de flambage critique théorique [kN]

facteur de correction tenant compte des paliers de la vis

Attention!

La force de fonctionnement ne doit pas excéder 80 % de la force maximale admissible.

Types de paliers

Valeurs typiques pour le facteur de correction f_k correspondant aux cas classiques pour des paliers de vis standards.

 ${\rm f_B}$ Facteur de correction tenant compte des paliers de la vis ${\rm I_V}$ Module d'inertie [mm⁴]

L_{KGS} Longueur libre, non-soutenue de la vis [mm]

w_{KGS} Charge linéaire [kg/m]

Types de paliers

Valeurs typiques pour le facteur de correction $f_{\rm B}$ correspondant aux cas classiques pour des paliers de vis standards.

Calcul d'exemple vis à billes

Données: vis à billes KGT 5010 longueur L = 2000 mm cas de palier 3

vitesse de rotationl: $n_{max} = 3000 [tr/min]$

Question: La vitesse de rotation critique est - elle dépassée ?

Quelle est la force axiale admissible

Quel est le fléchissement maximal?

Vitesse critique théorique $n_{kr} = 1290 \text{ tr/min}$

Force de flambage théorique $F_k = 95 \text{ kN}$

Vitesse maximale admissible n_{zul}

de (V)

$$\begin{array}{l} n_{zul} = 0.8 \cdot n_{kr} \cdot f_{kr} = 0.8 \cdot 1290 \; tr/min \cdot 1.47 = 1517 \; tr/min \\ \longrightarrow n_{zul} = 1517 \; tr/min \quad (< vitesse \ limite!) \end{array}$$

de (VI)

$$\begin{array}{l} F_{zul} = 0.8 \cdot F_k \cdot f_k = 0.8 \cdot 95 \text{ kN} \cdot 2.05 = 156 \text{ kN} \\ \longrightarrow F_{zul} = 153 \text{ kN} \quad \text{(Charge de base statique C_0!)} \end{array}$$

de (VII)

$$f_{max} = f_B \cdot 0,061 \cdot \frac{w_{KGS} \cdot L_{KGS}}{I_Y} = 0,41 \cdot 0,061 \cdot \frac{13,5 \text{ kg/m} \cdot 2 \text{ m}}{18,566 \text{ cm}^4}$$

 $f_{max} = 0.036 \text{ mm}$

Charge linéaire $W_{KGS} = 13,5 \text{ kg/m}$ Moment d'inertie $I_y = 18,566 \text{ cm}^4$

Résultat: La vis choisie ne doit être utilisée qu'avec une vitesse maximale de 1517 tr/min. Elle peut être chargée avec une force axiale de 150 kN et subit lors d'un montage horizontal un fléchissement maximal de 0,036 mm.

Tenir compte de la charge dynamique de base!

Dimensionnement de l'entraînement

Durée d'enclenchement et puissance d'entraînement

Afin de limiter l'échauffement de la vis, produit par friction, la poussée et la vitesse de levage doivent être limitées en fonction de la durée d'enclenchement relative. Le procédé décrit ci-dessous permet une estimation de la poussée et de la vitesse admissibles.

$$F_{eff} \cdot V_{H} \leq F_{Hub \, max} \cdot V_{H \, max} \cdot f_{t}$$

F_{eff} est force axiale effective agissant sur la vis [kN].

V_H est la vitesse de levage [mm/min].

F_{Hub max} est la poussée maximale admissible [kN].

Les valeurs ainsi obtenues ne sont pas valables pour des très petites courses en fonctionnement réversible. Dans ce cas, veuillez nous contacter. Pour des durées d'enclenchements relatives très courtes (moins de 10 min; par ex. des mouvements d'ajustement, des ajustements de niveau, etc.), f_t peut être extrapolé jusqu'au bord gauche du diagramme. Considérant les différents rendements, on obtient des puissances d'entraînements maximales suivantes (en kW):

 $V_{H \text{ max}}$

est la vitesse de levage maximale admissible [mm/min]. Elle résulte de la vitesse maximale de l'arbre de la vis sans fin de 1500 tr/min (vitesses plus grandes sur demande) et du rapport du vérin à vis.

Pour le modèle H : $V_{H max}$ = 1500 mm/min, pour le modèle L : $V_{H max}$ = 375 mm/min, pour le modèle KGT, voir le rapport de l'entrainement du vérin à vis en mm de course par rotation de la vis sans fin.

f_t est un facteur de température qui dépend de la durée d'enclenchement relative, relatif à une durée de 10 min. ou 60 min. à 20 °C

	M 0	M 1	M 2	M 3	M 4	M 5	J 1	J 2	J 3	J 4	J 5
Rapport. H (Trapez)	0,18	0,3	0,55	1,18	2,3	4,7	6,5	8,4	10,9	14,7	19
Rapport. L (Trapez)	0,12	0,19	0,35	0,75	1,4	3	4,2	5,4	7,3	9,3	12
Vis à billes	0,18	0,3	0,56	0,95	1,7/3,2	5,9	_	_	13,9	-	_

Ces valeurs ne représentent par un critère de sélection pour le moteur d'entraînement ; celui-ci doit être choisi en fonction du couple, de la vitesse de rotation et des conditions de fonctionnement.

$$M_{T} = \frac{F_{eff}}{2 \cdot \pi \cdot \eta} \cdot \frac{p}{i} + M_{0}$$

$$\begin{aligned} M_{Moteur \, d'entraîn.} &= M_{T \, SHG1} \cdot \frac{1}{\eta_{V1}} \\ &+ M_{T \, SHG2} \\ &+ M_{T \, SHG3} \cdot \frac{1}{\eta_{V2}} \cdot \frac{1}{\eta_{K}} \end{aligned}$$

Dimensionnement de l'entrainement

Couples d'entraînement nécessaires

Couple d'entraînement nécessaire pour un vérin à vis

Le couple d'entraînement nécessaire pour un vérin à vis est une fonction de la charge axiale sur la vis, du rapport et du rendement. Il faut noter que le couple de démarrage peut être considérablement plus grand que le couple nécessaire pour le fonctionnement en continu. Ceci est particulièrement valable pour des vérins à vis à bas rendement après un arrêt prolongé. Pour des pas de vis importants et des temps de démarrage très courts, le couple d'accélération doit éventuellement être vérifié

M_T est le couple d'entraînement nécessaire du vérin à vis sur la vis sans fin [Nm].

est la force axiale effective agissant sur la vis [kN].

 η^- est le rendement du vérin à vis en écriture décimale, par ex. 0,32 au lieu de 32 %. η est une valeur moyenne, obtenue par des mesures.

est le rapport du vérin à vis en mm de course par rotation de la vis sans fin

M_o est le couple au ralenti du vérin à vis [Nm]. M_o a été déterminé par des mesures après un court rodage à température ambiante avec une lubrification à graisse liquide. Il s'agit d'une valeur moyenne, qui peut être soumise à des fluctuations plus ou moins importantes en fonction de l'état de rodage, du lubrifiant et de la température..

Couple d'entraînement nécessaire pour une installation de vérins à vis

Le couple nécessaire pour une installation de vérins à vis résulte des couples d'entraînements des différents vérins à vis, en prenant en compte les pertes de friction statiques et dynamiques dans les différents éléments de transmission (accouplement, arbres de liaison, palier à semelle, engrenages angulaires, etc.). Il est alors utile de visualiser le flux de force à l'aide d'un schéma.

M_{T SHG1} est le couple d'entraînement nécessaire pour le vérin à vis SHG 1. Il faut noter que le couple d'amorce (couple de démarrage et couple d'accélération) peut être considérablement plus grand que le couple nécessaire pour le fonctionnement en continu. Ceci est particulièrement valable pour des vérins à vis à bas rendement après un arrêt prolongé.

 η_{v1} (V1) contient les pertes de friction statiques et dynamiques dans les paliers à semelle et les accouplements.

 η_{v2} est le rendement d' l'arbre de liaison V2.

 $\eta_{\nu}^{\rm L}=0,75...0,95$ en fonction de la longueur de l'arbre et le nombre de paliers à semelle.

 η_{K} est le rendement de l'engrenage à roue conique (seulement en cas d'un flux de force par l'engrenage, donc entre l'arbre de liaison V2 et le moteur d'entrainement). $\eta_{K}=0,90$

Dimensionnement de l'entrainement

Couples d'entrainement nécessaires

Couple d'entraînement maximal

Si le vérin à vis devait être bloqué par un démarrage de la vis contre un obstacle, l'engrenage pourrait absorber les couples d'entraînement maximaux MT suivant sur l'arbre d'entraînement. En cas de vérins à vis disposés en série, le vérin à vis le plus proche de l'entraînement pourrait transmettre ce couple sur son arbre d'entraînement.

Taille	M _{T max} [Nm]
M 0	1,5
M 1	3,4
M 2	7,1
M 3	18
M 4	38
M 5	93
J 1	148
J 2	178
J 3	240
J 4	340
J 5	570

Valeurs d'accélération

Moteur triphasé asynchrone à 4 pôles :

- env. 0,5 m/s2 (enclenchement direct) servomoteur:
- max. 5 m/s2 (limité par le couple d'entraînement maximal). Lors d'une utilisation de vérins à vis en combinaison avec des servomoteurs, il convient de noter:
- comparé avec des actionneurs linéaires, des masses plus important sont en mouvement
- on utilise plutôt des vitesses constantes avec différentes vitesses de rotation.
- le domaine d'application est souvent l'ajustage/le positionnement de dispositifs.
- il s'agit des positionnements avec des courtes durées d'enclenchement, c'est pourquoi des grandes valeurs d'accélération sont souvent nécessaires.
- à cause des faibles vitesses de course, des grandes valeurs d'accélération n'ont qu'une faible influence. sur la durée totale de déplacement.

Forces et couples sur l'arbre d'entraînement

Si les vérins à vis sont entraînés par un système générant des forces radiales, c-à-d pas par un accouplement sur l'arbre du moteur, mais par une chaine ou une courroie, il faut veiller que la force radiale sur l'arbre d'entraînement ne dépasse pas les valeurs limites (voir tableau ci-dessous).

Taille	F _{R max} [kN]
M 0	0,07
M 1	0,1
M 2	0,2
M 3	0,3
M 4	0,5
M 5	0,8
J 1	0,8
J 2	1,3
J 3	1,3
J 4	2,1
J 5	3,1

Choix du moteur d'entraînement

La connaissance du couple d'entraînement et de la vitesse de rotation est nécessaire pour la sélection d'un moteur approprié. Dans le cas le plus défavorable, la vis sans fin se décroche par fléchissement sous la force FR de la roue hélicoïdale. Cette disposition est à éviter, car elle dégrade l'engrènement entre vis et roue hélicoïdale et favorise l'usure d'entraînement. Il faut vérifier systématiquement que aucun des vérins à vis et éléments de transmission utilisés ne puissent être surchargés par le moteur d'entraînement. Ce risque se présente particulièrement dans des installations avec plusieurs vérins à vis en cas d'une répartition de charges inégale. En principe, l'installation doit être protégée par des interrupteurs de fin de course ou des accouplements avec limitation de couple pour un déplacement contre la position finale ou contre des obstacles

Forces et couples sur l'arbre moteur

Des entraînements à chaine ou à courroie dentée avec des petits pignons peuvent exercer des forces radiales considérables sur l'arbre moteur. En cas de doute, nous conseillons de consulter le fabricant du moteur.

Choix d'un engrenage à roue conique

Le choix d'un engrenage à roue conique est déterminé par les grandeurs suivantes:

- couple d'entraînement
- vitesse de rotation de l'entraînement (voir tableau)
- durée d'enclenchement et puissance d'entraînement
- forces et couples sur les bouts des vis (en cas de doute, nous consulter)

Vitesse de rotation d'entraînement nécessaire

La vitesse de rotation d'entraînement nécessaire est une fonction de la vitesse de levage souhaité, du rapport du vérin à vis et du rapport des éléments de transmission. En règle générale, ils offrent alors plusieurs possibilités pour obtenir une vitesse de levage spécifique. Les critères pour un choix adapté sont :

- un rendement favorable
- un chargement des éléments de transmission le plus faible possible en faveur d'une construction compacte et peu chère
- éviter des vitesses de rotation critiques pour les vis et arbres de transmission

Couple de l'écrou sur la vis

Le couple de l'écrou M de la vis est le couple qu'exerce la vis sur la plaque de fixation (tous les modèles N sauf V), ou encore le couple que subit l'écrou de levage de la vis (modèle R). Il ne doit pas être confondu avec le couple d'entraı̂nement M_{T} du vérin à vis sur la vis sans fin. M [Nm] = F_{eff} [kN] \cdot f_{M} (valable pour la plage moyenne et supérieure des charges) M est le couple de l'écrou de la vis [Nm] pour le mouvement "Levage sous charge".

F_{eff} est la force axiale efficace [kN].

est un facteur de conversion, qui comprend la géométrie de la vis et la friction. Cette valeur est valable pour des conditions de lubrification normales. La valeur supérieure doit utilisée pour un frottement sec ou statique. Pour des modèles avec vis à billes f_M est pratiquement constant.

Taille	f _M (filetage trapézoïd.)	f _M (Vis à billes)
M 0	1,4	1,2
M 1	1,6	1,6
M 2	1,8	1,6
M 3	2,7	1,6
M 4	3,4	1,6/3,2
M 5	4,6	3,2
J1	5,5	_
J 2	6,4	_
J3	7,2	3,2
J 4	8,0	_
J 5	10,6	_

Dimensionnement de l'entraînement

Tableau de puissance

Vitesse de rotation, puissance absorbée et vitesse de levage admissible avec des rapports N et L avec une vis trapézoïdale à un filet (Ba1). Toutes les indications de puissance se référent à la force de levage dynamique. Pour des durées d'enclenchement < 10 %/h ou des modèles avec des vis tournantes (Ba2), les puissances d'entraînement admissibles peuvent être majorées.

M 0 Vis Tr 14x4

n		sse de age.		F = 2,	5 [kN]			F = 2	[kN]			F = 1,5	5 [kN]			F = 1	[kN]		F	= 0,7	5 [kN]			F = 0,5	5 [kN]		F	= 0,2	25 [kN]	
[TR/ min]	(m/	/min)	1	٧	ı	_	1	V	L	-	1	V	L		1	V	L	-	1	٧	L	-	1	V	L		1	V	L	-
	Н	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1500	1,50	0,375	1,2	0,18	0,4	0,1	0,9	0,15	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1
1000	1,00	0,250	1,2	0,12	0,4	0,1	0,9	0,10	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1
750	0,75	0,188	1,2	0,10	0,4	0,1	0,9	0,10	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1
600	0,60	0,150	1,2	0,10	0,4	0,1	0,9	0,10	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1
500	0,50	0,125	1,2	0,10	0,4	0,1	0,9	0,10	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1
300	0,30	0,075	1,2	0,10	0,4	0,1	0,9	0,10	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1
100	0,10	0,025	1,2	0,10	0,4	0,1	0,9	0,10	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1
50	0,05	0,013	1,2	0,10	0,4	0,1	0,9	0,10	0,3	0,1	0,7	0,1	0,2	0,1	0,5	0,1	0,2	0,1	0,4	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,1

M 1 Vis Tr 18x4

n		sse de age.		F = 5	[kN]			F = 4	[kN]			F = 3	[kN]			F = 2,5	5 [kN]			F = 2	[kN]			F = 1,5	5 [kN]			F = 1	[kN]	
[tr/min]	(m/	/min)	1	V	l	-	1	V	L		1	V	L		1	V	L		1	V	L		1	١	L		1	V	L	
	Н	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1500	1,50	0,375	2,7	0,42	0,9	0,1	2,1	0,33	0,7	0,1	1,6	0,25	0,5	0,1	1,3	0,21	0,4	0,1	1,1	0,2	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1
1000	1,00	0,250	2,7	0,28	0,9	0,1	2,1	0,22	0,7	0,1	1,6	0,17	0,5	0,1	1,3	0,14	0,4	0,1	1,1	0,1	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1
750	0,75	0,188	2,7	0,21	0,9	0,1	2,1	0,17	0,7	0,1	1,6	0,13	0,5	0,1	1,3	0,10	0,4	0,1	1,1	0,1	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1
600	0,60	0,150	2,7	0,17	0,9	0,1	2,1	0,13	0,7	0,1	1,6	0,10	0,5	0,1	1,3	0,10	0,4	0,1	1,1	0,1	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1
500	0,50	0,125	2,7	0,14	0,9	0,1	2,1	0,10	0,7	0,1	1,6	0,10	0,5	0,1	1,3	0,10	0,4	0,1	1,1	0,1	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1
300	0,30	0,075	2,7	0,10	0,9	0,1	2,1	0,10	0,7	0,1	1,6	0,10	0,5	0,1	1,3	0,10	0,4	0,1	1,1	0,1	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1
100	0,10	0,025	2,7	0,10	0,9	0,1	2,1	0,10	0,7	0,1	1,6	0,10	0,5	0,1	1,3	0,10	0,4	0,1	1,1	0,1	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1
50	0,05	0,013	2,7	0,10	0,9	0,1	2,1	0,10	0,7	0,1	1,6	0,10	0,5	0,1	1,3	0,10	0,4	0,1	1,1	0,1	0,3	0,1	0,8	0,1	0,3	0,1	0,5	0,1	0,2	0,1

M 2 Vis Tr 20x4

n		sse de age.		F = 10) [kN]			F = 8	[kN]			F = 6	[kN]			F = 4	[kN]			F = 3	[kN]			F = 2	[kN]			F = 1	[kN]	
[tr/min]		min)	1	V	١	L	1	V		L	1	V		L	1	V	L		1	N	L		1	V	Ĺ		1		<u> </u>	
	Н	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1500	1,50	0,375	5,7	0,89	1,9	0,30	4,5	0,71	1,5	0,24	3,4	0,54	1,1	0,18	2,3	0,36	0,8	0,1	1,7	0,27	0,6	0,1	1,1	0,2	0,4	0,1	0,6	0,1	0,2	0,1
1000	1,00	0,250	5,7	0,60	1,9	0,20	4,5	0,48	1,5	0,16	3,4	0,36	1,1	0,12	2,3	0,24	0,8	0,1	1,7	0,18	0,6	0,1	1,1	0,1	0,4	0,1	0,6	0,1	0,2	0,1
750	0,75	0,188	5,7	0,45	1,9	0,15	4,5	0,36	1,5	0,12	3,4	0,27	1,1	0,10	2,3	0,18	0,8	0,1	1,7	0,13	0,6	0,1	1,1	0,1	0,4	0,1	0,6	0,1	0,2	0,1
600	0,60	0,150	5,7	0,36	1,9	0,12	4,5	0,29	1,5	0,10	3,4	0,21	1,1	0,10	2,3	0,14	0,8	0,1	1,7	0,10	0,6	0,1	1,1	0,1	0,4	0,1	0,6	0,1	0,2	0,1
500	0,50	0,125	5,7	0,30	1,9	0,10	4,5	0,24	1,5	0,10	3,4	0,18	1,1	0,10	2,3	0,12	0,8	0,1	1,7	0,10	0,6	0,1	1,1	0,1	0,4	0,1	0,6	0,1	0,2	0,1
300	0,30	0,075	5,7	0,18	1,9	0,10	4,5	0,14	1,5	0,10	3,4	0,11	1,1	0,10	2,3	0,10	0,8	0,1	1,7	0,10	0,6	0,1	1,1	0,1	0,4	0,1	0,6	0,1	0,2	0,1
100	0,10	0,025	5,7	0,10	1,9	0,10	4,5	0,10	1,5	0,10	3,4	0,10	1,1	0,10	2,3	0,10	0,8	0,1	1,7	0,10	0,6	0,1	1,1	0,1	0,4	0,1	0,6	0,1	0,2	0,1
50	0,05	0,013	5,7	0,10	1,9	0,10	4,5	0,10	1,5	0,10	3,4	0,10	1,1	0,10	2,3	0,10	0,8	0,1	1,7	0,10	0,6	0,1	1,1	0,1	0,4	0,1	0,6	0,1	0,2	0,1

Dimensionnement de l'entraînement

Tableau de puissance pour vérins à vis MULTI

M 3 Vis Tr 30x6

	Vites	sse de																												
n	lev	age.	F = 25 [kN]			F = 20 [kN]			F = 15 [kN]			F = 10 [kN]				F = 5 [kN]				F = 2,5 [kN]					F = 1	[kN]				
[tr/min]	(m)	/min)	1	N		L	1	V		L	1	V		L	1	N		L	1	N	L		1	V	L		1	V	L	
	Н	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1500	1,50	0,375	14,7	2,31	5,2	0,82	11,8	1,85	4,2	0,66	8,8	1,39	3,1	0,49	5,9	0,93	2,1	0,33	2,9	0,46	1,0	0,2	1,5	0,2	0,5	0,1	0,6	0,1	0,2	0,1
1000	1,00	0,250	14,7	1,54	5,2	0,55	11,8	1,23	4,2	0,44	8,8	0,93	3,1	0,33	5,9	0,62	2,1	0,22	2,9	0,31	1,0	0,1	1,5	0,2	0,5	0,1	0,6	0,1	0,2	0,1
750	0,75	0,188	14,7	1,16	5,2	0,41	11,8	0,93	4,2	0,33	8,8	0,69	3,1	0,25	5,9	0,46	2,1	0,16	2,9	0,23	1,0	0,1	1,5	0,1	0,5	0,1	0,6	0,1	0,2	0,1
600	0,60	0,150	14,7	0,93	5,2	0,33	11,8	0,74	4,2	0,26	8,8	0,56	3,1	0,20	5,9	0,37	2,1	0,13	2,9	0,19	1,0	0,1	1,5	0,1	0,5	0,1	0,6	0,1	0,2	0,1
500	0,50	0,125	14,7	0,77	5,2	0,27	11,8	0,62	4,2	0,22	8,8	0,46	3,1	0,16	5,9	0,31	2,1	0,11	2,9	0,15	1,0	0,1	1,5	0,1	0,5	0,1	0,6	0,1	0,2	0,1
300	0,30	0,075	14,7	0,46	5,2	0,16	11,8	0,37	4,2	0,13	8,8	0,28	3,1	0,10	5,9	0,19	2,1	0,10	2,9	0,10	1,0	0,1	1,5	0,1	0,5	0,1	0,6	0,1	0,2	0,1
100	0,10	0,025	14,7	0,15	5,2	0,10	11,8	0,12	4,2	0,10	8,8	0,10	3,1	0,10	5,9	0,10	2,1	0,10	2,9	0,10	1,0	0,1	1,5	0,1	0,5	0,1	0,6	0,1	0,2	0,1
50	0,05	0,013	14,7	0,10	5,2	0,10	11,8	0,10	4,2	0,10	8,8	0,10	3,1	0,10	5,9	0,10	2,1	0,10	2,9	0,10	1,0	0,1	1,5	0,1	0,5	0,1	0,6	0,1	0,2	0,1

M 4 Vis Tr 40x7

n		sse de age.	F = 50 [kN]			F = 40 [kN]			F = 30 [kN]				F = 20 [kN]				F = 10 [kN]				F = 5 [kN]					F = 2,5	5 [kN]			
[tr/min]	(m/	min)	N L		N		L		N		L	L		N		L		N			N		L		N		L	_		
	н	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1500	1,50	0,375	31,8	5,0	11,1	1,7	25,5	4,0	8,8	1,4	19,1	3,0	6,6	1,0	12,7	2,0	4,4	0,70	6,4	1,0	2,2	0,3	3,2	0,5	1,1	0,1	1,6	0,3	0,6	0,1
1000	1,00	0,250	31,8	3,3	11,1	1,2	25,5	2,7	8,8	0,9	19,1	2,0	6,6	0,7	12,7	1,3	4,4	0,50	6,4	0,7	2,2	0,2	3,2	0,3	1,1	0,1	1,6	0,2	0,6	0,1
750	0,75	0,188	31,8	2,5	11,1	0,9	25,5	2,0	8,8	0,7	19,1	1,5	6,6	0,5	12,7	1,0	4,4	0,35	6,4	0,5	2,2	0,2	3,2	0,3	1,1	0,1	1,6	0,1	0,6	0,1
600	0,60	0,150	31,8	2,0	11,1	0,7	25,5	1,6	8,8	0,6	19,1	1,2	6,6	0,4	12,7	0,8	4,4	0,30	6,4	0,4	2,2	0,1	3,2	0,2	1,1	0,1	1,6	0,1	0,6	0,1
500	0,50	0,125	31,8	1,7	11,1	0,6	25,5	1,3	8,8	0,5	19,1	1,0	6,6	0,3	12,7	0,7	4,4	0,20	6,4	0,3	2,2	0,1	3,2	0,2	1,1	0,1	1,6	0,1	0,6	0,1
300	0,30	0,075	31,8	1,0	11,1	0,3	25,5	0,8	8,8	0,3	19,1	0,6	6,6	0,2	12,7	0,4	4,4	0,10	6,4	0,2	2,2	0,1	3,2	0,1	1,1	0,1	1,6	0,1	0,6	0,1
100	0,10	0,025	31,8	0,3	11,1	0,1	25,5	0,3	8,8	0,1	19,1	0,2	6,6	0,1	12,7	0,1	4,4	0,10	6,4	0,1	2,2	0,1	3,2	0,1	1,1	0,1	1,6	0,1	0,6	0,1
50	0,05	0,013	31,8	0,2	11,1	0,1	25,5	0,1	8,8	0,1	19,1	0,1	6,6	0,1	12,7	0,1	4,4	0,10	6,4	0,1	2,2	0,1	3,2	0,1	1,1	0,1	1,6	0,1	0,6	0,1

M 5 Vis Tr 60x9

	Vitesse de						0 [1 1 1]	F 00 [IAI]				5 00 (I NI)				F 40 [LN]					F 00				F 46	. El . N. 13				
n	lev	levage. F = 150		J [kN]		F = 100 [kN]			F = 80 [kN]			F = 60 [kN]				F = 40 [kN]				F = 20 [kN]					F = 10	[kN]				
[tr/min]	(m)	/min)	N		L	L		V	L		N		L		١	N		L		N			N		L		N		L	
	Н	L	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW	Nm	kW
1500	1,50	0,375	125,7	19,7	42,6	6,7	83,8	13,2	28,4	4,5	67,0	10,5	22,7	3,6	50,3	7,9	17,1	2,7	33,5	5,3	11,4	1,8	16,8	2,6	5,7	0,9	8,4	1,3	2,8	0,4
1000	1,00	0,250	125,7	13,2	42,6	4,5	83,8	8,8	28,4	3,0	67,0	7,0	22,7	2,4	50,3	5,3	17,1	1,8	33,5	3,5	11,4	1,2	16,8	1,8	5,7	0,6	8,4	0,9	2,8	0,3
750	0,75	0,188	125,7	9,9	42,6	3,3	83,8	6,6	28,4	2,2	67,0	5,3	22,7	1,8	50,3	3,9	17,1	1,3	33,5	2,6	11,4	0,9	16,8	1,3	5,7	0,4	8,4	0,7	2,8	0,2
600	0,60	0,150	125,7	7,9	42,6	2,7	83,8	5,3	28,4	1,8	67,0	4,2	22,7	1,4	50,3	3,2	17,1	1,1	33,5	2,1	11,4	0,7	16,8	1,1	5,7	0,4	8,4	0,5	2,8	0,2
500	0,50	0,125	125,7	6,6	42,6	2,2	83,8	4,4	28,4	1,5	67,0	3,5	22,7	1,2	50,3	2,6	17,1	0,9	33,5	1,8	11,4	0,6	16,8	0,9	5,7	0,3	8,4	0,4	2,8	0,1
300	0,30	0,075	125,7	3,9	42,6	1,3	83,8	2,6	28,4	0,9	67,0	2,1	22,7	0,7	50,3	1,6	17,1	0,5	33,5	1,1	11,4	0,4	16,8	0,5	5,7	0,2	8,4	0,3	2,8	0,1
100	0,10	0,025	125,7	1,3	42,6	0,4	83,8	0,9	28,4	0,3	67,0	0,7	22,7	0,2	50,3	0,5	17,1	0,2	33,5	0,4	11,4	0,1	16,8	0,2	5,7	0,1	8,4	0,1	2,8	0,1
50	0,05	0,013	125,7	0,7	42,6	0,2	83,8	0,4	28,4	0,1	67,0	0,4	22,7	0,1	50,3	0,3	17,1	0,1	33,5	0,2	11,4	0,1	16,8	0,1	5,7	0,1	8,4	0,1	2,8	0,1

Montage et entretien

Vis trapézoïdales TGT

Montage

Les vis trapézoïdales doivent être soigneusement alignées lors du montage - si on ne dispose pas d'instruments de mesure adaptés, la vis doit être tournée à la main sur toute la longueur avant d'installer l'entraînement. Une irrégularité dans la force absorbée et/ou des traces sur l'extérieur de la vis indiquent un défaut d'alignement entre l'axe de la vis et le guidage. Dans ce cas, il faut desserrer les vis de fixation correspondantes et tourner la vis à la main encore une fois. Si la force absorbée est maintenant homogène, il faut aligner les éléments correspondants, sinon il faut chercher le défaut d'alignement en desserrant d'autres vis de fixation.

Protection

Les vis trapézoïdales sont moins sensibles par rapport à l'encrassement que des vis à billes, particulièrement pour de faibles vitesses de rotation (par ex. fonctionnement manuel).

Des entraînements de positionnement, en particulier ceux avec des vis en plastique, nécessitent des mesures de protection, comparables à celle pour des vis à billes.

Lubrification

Lubrification par de l'huile

Est utilisée pour des vis trapézoïdales seulement dans des cas spéciaux.

Lubrification à la graisse

C'est le type de lubrification courant pour des vis trapézoïdales. Les intervalles de lubrification dépendent des conditions d'utilisation ; il est conseillé de nettoyer la vis avant le graissage, en particulier si on utilise des installations de graissage de haute performance.

Types de graisses : graisse pour paliers à roulement sans fraction solide, par ex. NELL GO.

Température de service

Dépend du type de l'écrou utilisé, des conditions de lubrification et des exigences. Pour des températures au dessus de 100° C (pour des écrous au dessus de 70° C), veuillez nous consulter.

Usure

Peut être vérifié à la main ; si le jeu axial d'une vis à un filet est supérieur à 1/4 du pas de la vis, l'écrou doit être remplacé.

Vis à billes KGT

Montage

Le montage de vis à billes nécessite des connaissances particulières et des moyens de mesure correspondantes. En raison de la faible friction d'une vis à billes, les défauts d'alignement ne peuvent être détectés à la main. Les forces radiales ou excentriques doivent être absorbées par des guidages externes. Les vis à billes ne peuvent absorber que des forces axiales. Afin d'éviter des endommagements de la KGT, la machine doit être équipée avec des interrupteurs de fin de course et des amortisseurs de butée.

Protection

Des salissures survenues lors du montage devraient être enlevées avec du pétrole, de l'huile ou de l'essence de lavage. Des nettoyants à froid ou des solvants ne sont admis. Pendant le fonctionnement, la vis à billes doit être protégée contre la poussière, des copeaux et d'autres objets semblables, même si la vis est équipée de racleurs. Des mesures de protection possibles:

- Soufflet (sans guidage supplémentaire seulement en cas de montage vertical).
- Protecteur à ressort.
- Tubes ou douilles télescopiques (très encombrant axialement).

Lubrification

La lubrification correcte est importante pour la vis à billes afin d'obtenir la durée de vie calculée, d'éviter un échauffement excessif et de garantir un fonctionnement régulier et silencieux. On utilise pour la KGT les mêmes lubrifiants que pour les paliers à roulement.

Lubrification par brouillard d'huile

Pour une lubrification centralisée par brouillard d'huile, seuls des écrous à vis à billes sans racleurs doivent être utilisés.

Lubrification par de l'huile

La quantité d'huile injectée ne doit pas excéder les pertes sur les racleurs. (sinon, lubrification par circulation d'huile)
Types d'huile : viscosités de 25 à 100 mm2/s à 100 °C.

Lubrification à la graisse

Le regraissage s'effectue en fonction des pertes de graisse sur les racleurs (en conditions de fonctionnement normales, un regraissage toutes les 200 à 300 heures de fonctionnement est nécessaire). Considérant les pertes de graisse, un graissage unique à vie n'est pas suffisant

Types de graisses :

graisse pour paliers à roulement sans fraction solide. Le premier remplissage est effectué en usine avec de la graisse pour paliers à roulement. Pour des fortes sollicitations mécaniques, nous recommandons la graisse Neff Gear-1.

Température de service

La plage de températures de service admissibles se situe pour des vis à billes entre –30 °C et +80 °C, +110 °C sont admissibles pour de courtes durées. La lubrification correcte est toujours une prémisse indispensable. Pour des températures en dessous de –20 °C, le couple peut se voir multiplié par un facteur de 10.

Montage et entretien

Montage de vérins à vis

Sens de rotation

Avant de débuter les travaux de montage, le sens de rotation de tous les vérins à vis, des engrenages à roues coniques et des moteurs d'entraînement doivent être vérifiés en vue de la direction d'avance des différents vérins à vis.

Défauts d'alignement

Lors du montage, tous les éléments doivent être soigneusement alignés; les défauts d'alignement et des tensions augmentent l'absorption de puissance, occasionnent des échauffements et de l'usure précoce. Avant l'installation de l'entraînement, chaque vérin à vis devrait être tourné à la main sans charge sur toute sa longueur de course. Une irrégularité dans la force absorbée et/ou des traces sur l'extérieur de la vis indiquent un défaut d'alignement entre l'axe du vérin à vis et ses guidages supplémentaires. Dans ce cas, il faut desserrer les vis de fixation correspondantes et tourner la vis à la main encore une fois. Si la force absorbée est maintenant homogène, il faut aligner les éléments correspondants, sinon il faut chercher le défaut d'alignement en desserrant d'autres vis de fixation.

Essais

Avant d'installer le moteur d'entraînement, le sens de rotation de toute l'installation et le bon fonctionnement des interrupteurs de fin de course doivent être vérifiés. Pour le modèle N (avec vis sortante et rentrante), il faut veiller que la vis soit mouillée avec de la graisse de l'intérieur de l'engrenage ; sinon, regraisser. Pour le modèle R (vis en rotation), la vis doit être enduite avec la graisse afin de garantir la lubrification pour le fonctionnement. Ensuite, les premiers essais sans charge peuvent être effectués.

Pour des essais sous charge de vérins à vis trapézoïdale, une durée d'enclenchement maximale de 30% ne doit pas être dépassée.

Fonctionnement

Les charges, vitesses de rotation et conditions de fonctionnement des vérins à vis et des éléments de transmission ne doivent pas être dépassées, même pas pour une courte durée.

Le non-respect de cette consigne rend la garantie caduque.

Valeurs indicatives pour le montage du couvercle de palier

Туре	Couple de serrage [Nm]
M 0	3
M 1	5
M 2	9
M 3	13
M 4	32
M 5	60
J 1	70
J 2	150
J 3	150
J 4	220
J 5	300

Entretien des vérins à vis

Sécurité

Après une courte durée de fonctionnement, toutes les vis de fixation doivent être resserrées. En cas de conditions de fonctionnement difficiles et en fonction de la durée d'enclenchement, l'usure de l'écrou (de la roue hélicoïdale) doit être vérifiée à l'aide du jeu de l'engrenage. Si le jeu axial d'un filetage à un filet est supérieur à 1/4 du pas de la vis, l'écrou (la roue hélicoïdale) doit être remplacé

Lubrification

Les vérins à vis sont équipés en usine avec de la graisse et sont livrés prêts à l'emploi.

En fonction de la perte de graisse et pour des longues durées d'enclenchement, les modèles de vérins à vis // devrait être regraissés toutes les 50 à 100 heures de fonctionnement par les graisseurs avec une des graisses citées ci-dessous. La vis devrait être nettoyée et graissée en même temps. Après 1500 heures de fonctionnement ou après 36 mois, nous recommandons de nettoyer le vérin de la vieille graisse et de le remplir avec de la graisse neuve. Les vérins à vis sont facilement à démonter.

- Desserrer les deux tiges filetées qui fixent le couvercle de palier.
- Dévisser la vis et enlever la protection de la vis, si existante.
- Dévisser le couvercle de palier à l'aide d'une clef à ergots.

Pour remonter le couvercle du palier, procéder comme suit : appliquer le couvercle de palier fortement (avec env. 10-fois la valeur donnée dans le tableau "Valeurs indicatives pour le montage du couvercle de palier"), le défaire ensuite et réappliquer avec la valeur indicative du tableau ; vérifier l'absence de jeu axial et la souplesse.

Graisse standard: Neffgear MP 1/2

Types de graisse en option: Castrol Spheerol BM2 Mobil Mobilgrease XHP Shell Retinax HD2 Klüber Microlube GBO

Graissage par entraînement

Туре	
M 0	0,03
M 1	0,06
M 2	0,14
M 3	0,24
M 4	0,8
M 5	1,1
J 1	1,5
J 2	2,0
J 3	2,0
J 4	2,7
J 5	3,2

Contact

NEFF Gewindetriebe GmbH Karl-Benz-Str. 24 71093 Weil im Schönbuch Postfach 1230 71108 Waldenbuch

Telefon: 07157/53890-0 Telefax: 07157/53890-25 www.neff-gewindetriebe.de info@neff-gewindetriebe.de